期刊文献+

LIL for the Length of the Longest Increasing Subsequences

原文传递
导出
摘要 Let X1,X2,…,Xn,…be a sequence of i.i.d.random variables uniformly distributed on[0;1],and denote by Ln the length of the longest increasing subsequences of X1,X2,…,Xn.Consider the poissonized version Hn based on Hammersley’s representation in the 2-dimensional space.A law of the iterated logarithm for Hn is established using the well-known subsequence method and Borel-Cantelli lemma.The key technical ingredients in the argument include superadditivity,increment independence and precise tail estimates for the Hn’s.The work was motivated by recent works due to Ledoux(J.Theoret.Probab.31,(2018)).It remains open to establish an analog for the Ln itself.
作者 Zhong-gen SU
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第2期283-293,共11页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11871425,11731012) the Fundamental Research Funds for Central Universities.
  • 相关文献

参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部