期刊文献+

基于耦合CNN评分预测模型的个性化商品推荐 被引量:8

Personalized Commodity Recommendation Based on Coupled CNN Predictive Scoring Model
在线阅读 下载PDF
导出
摘要 电子商务中大量评论数据蕴含着丰富的信息,该信息有助于解决个性化推荐系统存在的数据稀疏问题.为了充分挖掘评论数据蕴含的价值,提高商品推荐的准确率,本文提出了基于耦合CNN评分预测模型的个性化商品推荐方法.该方法首先利用耦合CNN构建评分预测模型,将耦合CNN分为用户网络和商品网络,划分成输入层、卷积层、输出层和共享层;用户评论数据和商品评论数据分别从相应网络输入;在评论数据分析时,从字向量角度进行语义分析,同时改变传统的使用单一大小卷积核处理句子的模式,使用多个并行的卷积层,利用大小不同的卷积核对句子进行特征提取;两个网络的输出将共同汇聚于共享层,在共享层使用因子分解机进行评分预测;最后将结果中的高评分商品推荐给用户.经对比实验验证,本文所给方法能够提高商品推荐的准确率. A large number of comment data in e-commerce contain abundant information,the information helps to solve the problem of data sparsity in personalized recommendation system. In order to improve the efficiency of using comment data and the accuracy of commodity recommendation,a personalized commodity recommendation method based on coupled CNN scoring predictive model was proposed. This method uses CNN to construct scoring prediction model and divides the coupled CNN into user network and commodity network,which are divided into input layer,convolution layer,output layer and sharing layer. User comment and commodity comment are input from corresponding network respectively. In the analysis of commentary data,semantic analysis is carried out from the perspective of word vector,while changing the traditional sentence processing mode using single-size convolution kernel,using multiple parallel convolution layers,using multiple convolution kernels with different sizes to extract sentence features. The outputs of the two networks are converged in the sharing layer,where the Factorization Machine algorithm is used for scoring prediction. Finally,the highscore commodities in the results are recommended to users. The results of comparative experiments show that the proposed method can improve the accuracy of commodity recommendation.
作者 冯勇 韩晓龙 顾兆旭 王龙 徐孟阳 刘志国 FENG Yong;HAN Xiao-long;GU Zhao-xu;WANG Long;XU Meng-yang;LIU Zhi-guo(College of Information,Liaoning University,Shenyang 110036,China;Computer Department,Liaoning Vocational College of Light Industry,Dalian 116100,China;North China Chemical Sales Branch,Petro China Co Ltd.,Zhengzhou 450000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第2期393-398,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71771110)资助 辽宁省社会科学规划基金项目(L18AGL007)资助 吉林大学符号计算与知识工程教育部重点实验室项目(93K172018K01)资助.
关键词 个性化 商品推荐 卷积神经网络 评论 评分预测 personalized commodity recommendation convolutional neural network(CNN) comment scoring prediction
  • 相关文献

参考文献9

二级参考文献82

  • 1曾庆辉,邱玉辉.一种基于协作过滤的电子图书推荐系统[J].计算机科学,2005,32(6):147-150. 被引量:14
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:251
  • 4董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 5Adomavicius G and Tuzhilin A. Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 6Adomavicius G, Sankaranarayanan R, Sen S, et al.. Incorporating contextual information in recommender systems using a multidimensional approach[J]. A CM Transactions on Information Systems, 2005, 23(1): 103-145.
  • 7Adomavicius G and Tuzhilin A. Context-aware Recommender Systems (Book Chapter)[M]. Recommender Systems Hand-book, New York, Dordrecht, Heidelberg, London, Springer Press, 2011: 217-253.
  • 8Zhang Yu-jie and Wang Li-cai. Some challenges for contextaware recommender systems[C]. In the 1st Workshop on Recommender System at The 5th IEEE International Conference on Computer Science & Education, Hefei, China, 2010: 362-365.
  • 9Wang Li-cai. Understanding and using contextual information in recommender systems[C]. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, Beijing, China, 2011: 1329-1330.
  • 10Ricci F. Mobile recommender systems[J]. Journal of Information Technology and Tourism, 2011, 12(3): 205-231.

共引文献161

同被引文献67

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部