期刊文献+

长短时记忆网络水下目标噪声智能识别方法 被引量:11

Intelligent recognition of underwater target noise based on long short-term memory networks
在线阅读 下载PDF
导出
摘要 未来基于水下无人平台的水声目标探测体系要求平台自身具备目标智能化识别能力,而传统水下目标噪声识别方法需要人工提取泛化能力强的特征数据,且识别过程具有较强的人机交互特性,无法满足这一要求。针对这一问题,本文研究一种基于长短时记忆网络(LSTM)的水下目标噪声智能识别方法,借助深度学习自主学习数据特征的能力,应用长短时记忆网络(LSTM)分别对水下目标噪声的时域时间序列数据、频谱数据、梅尔倒谱(MFCC)数据进行深层次特征提取与识别,并使用实际水声目标噪声信号对该方法进行了验证。结果表明,在上述3种输入数据情况下,采用LSTM长短时记忆模型均能有效实现水下目标噪声特征提取与智能识别。 In the future,the underwater acoustic target detection system based on the unmanned underwater platform requires the platform itself to have the ability of intelligent target recognition,while the traditional method of underwater target noise recognition needs to manually extract the feature data with strong generalization ability.And the recognition process has a strong human-computer interaction characteristics,which can not meet this requirement.To solve this problem,an intelligent underwater target noise recognition method based on long short-term memory network(LSTM)is studied in this paper.The time domain time series data,frequency spectrum data and Mel frequency cepstrum coefficient(MFCC)data of underwater target noise are extracted and recognized by long short-term memory network(LSTM).The method is verified by underwater acoustic target noise signal.The results show that the long-short term memory network adopted in this paper can effectively achieve underwater target noise feature extraction and intelligent recognition under the above three input data conditions.
作者 张少康 王超 田德艳 张小川 ZHANG Shao-kang;WANG Chao;TIAN De-yan;ZHANG Xiao-chuan(Navy Submarine Academy,Qingdao 266000,China;National Laboratory for Marine Science and Technology,Qingdao 266000,China)
出处 《舰船科学技术》 北大核心 2019年第23期181-185,共5页 Ship Science and Technology
关键词 深度学习 长短时记忆网络 水下目标辐射噪声 特征提取 智能识别 deep learning long short-term memory network underwater target radiated noise feature extraction intelligent recognition
  • 相关文献

参考文献12

二级参考文献44

  • 1杨宏晖,孙进才,袁骏.基于支持向量机和遗传算法的水下目标特征选择算法[J].西北工业大学学报,2005,23(4):512-515. 被引量:19
  • 2吴国清,任锐,陈耀明,李训诰.舰船辐射噪声的子波分析[J].声学学报,1996,21(4):700-708. 被引量:11
  • 3陶笃纯.噪声和振动谱中线谱的提取和连续谱平滑[J].声学学报,1984,9(6):337-344.
  • 4张贤达.现代信号处理[M].清华大学出版社,1998.436-437.
  • 5郝云巍.潜艇线谱探讨.第六届船舶水下噪声学术讨论会论文集[M].桂林,1995..
  • 6陈敬军.[D].,1997:45 -55.
  • 7吕俊军 那键 倪昌祥.非平稳信号的动态检测和跟踪[R]..声纳技术研讨会[C].杭州,2000..
  • 8王朝瑞 史荣昌.矩阵分析[M].西安:西北工业大学出版社,2000.163-168.
  • 9Cadzow J A. Spectral estimation: An overdetermined rational model equation approach [J]. Proc IEEE, 70:907-938.
  • 10McDonough R N, Whalen A D. Detection of signals in noise. 2nd Ed. Academic Press, USA, 1995.

共引文献707

同被引文献77

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部