期刊文献+

能源桩全生命周期热响应半径简化计算方法 被引量:9

Simplified calculation method of thermal response radius of energy pile in its whole life cycle
在线阅读 下载PDF
导出
摘要 根据工程中群桩埋管换热器状况,采用叠加原理计算群桩埋管的桩壁温度,定义能源桩埋管换热器的热响应半径为周围其他桩引起的过余温度影响系数≤5%时相邻桩中心线之间的垂直距离;在大量计算分析的基础上,采用最小二乘法拟合出单工况荷载作用下能源桩埋管换热器热响应半径计算公式;考虑到实际能源桩工程系统运行时每延米换热功率是关于时间的函数,建立动态负荷作用下能源桩三维传热数值模型,分析不同荷载分布形式、峰值负荷、运行时间以及全生命周期对能源桩热响应半径的影响。研究结果表明:在单桩、单排桩、双排桩和多排桩布置状况下,本文拟合公式的热响应半径计算结果与无限长线热源模型解析解之间的最大相对误差分别为4.62%,4.45%,3.77%和3.32%,说明该方法具有较高的计算精度,符合工程要求;荷载分布形式以及峰值负荷仅影响桩周岩土体中过余温度及其梯度,桩周岩土体热扩散系数及运行时间影响温度传递范围;根据工程中最常见的多排桩布置方式,得到不同桩径和不同岩土体热扩散系数条件下能源桩热响应半径随时间的变化关系,可为工程应用提供参考。 According to the condition of pile-group buried heat exchanger in engineering,the temperature of pilegroup buried heat exchanger was calculated by superposition principle,and the thermal response radius of pilebased buried heat exchanger was defined as the vertical distance between center lines of adjacent piles when the excess temperature influence coefficient caused by other piles was less than or egual to 5%.On the basis of a large number of calculation and analysis,the calculation formula for thermal response radius of energy pile buried heat exchanger was fitted using the least squares method under working condition of single load response.In view of the actual energy pile,per linear meter heat power of engineering system in running time was a function of time,energy piles three-dimensional heat transfer numerical model was set up under the action of dynamic load,and the the influences of different load distribution forms,peak load,running time and the whole life cycle on the thermal response radius of energy pile were analyzed.The results show that in cases of single pile,single row,double row piles and pile arrangement,the maximum relative error between thermal response radii obtained from the proposed formula and analytical solution of infinite long heat source model are 4.62%,4.45%,3.77% and 3.32%,respectively.The method has higher accuracy and can meet the demands of engineering.The load distribution form and size of the peak load only affect the excess temperature and gradient in the surrounding rock mass,while pile rock and soil body heat diffusion coefficient and temperature area are influenced by operation time.According to the most common arrangement of multi-row piles in practice,the relationship between thermal response radius of energy piles with time under different pile diameters and different thermal diffusivity of rock-soil mass is plotted,which provides reference for the engineering application.
作者 王哲 刘耶军 张正威 翁凯文 郑秀玲 许四法 WANG Zhe;LIU Yejun;ZHANG Zhengwei;WENG Kaiwen;ZHENG Xiuling;XU Sifa(School of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China;School of Landscape Architecture,Zhejiang Agriculture and Forestry University,Hangzhou 311300,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期514-522,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51778585)~~
关键词 热响应半径 计算模型 能源桩 数值模拟 传热特性 thermal response radius calculation model energy pile numerical simulation heat transfer characteristics
  • 相关文献

参考文献7

二级参考文献53

  • 1M Piechowski. Heat and mass transfer model of a ground heat exchanger: validation and sensitivity analysis [J]. Int. J. of Energy Res., 1998, 22:965-979.
  • 2GB50366-2009地源热泵系统工程技术规范[S].北京:中国建筑工业出版社.2009.
  • 3GB 50366-2005地源热泵系统工程技术规范[S].
  • 4吴大正,杨林耀,张永瑞.信号与线性系统分析[M].北京:高等教育出版社,2004.
  • 5Yang H, Cui P, Fang Z. Vertical-borehole ground- couple heat pumps: A review of models and systems [J]. Applied Energy, 2010, 87(1) : 16-27.
  • 6Diao N R, Li Q Y, Fang Z H. Heat transfer in ground heat exchangers with ground advection [ J ]. Journal of Thermal Sciences, 2004, 43(12) : 1203-1211.
  • 7Sutton M G, Nutter D W, Couvillion R J. A ground resistance for vertical bore heat exchangers with ground- water flow [ J ]. Journal of Energy Resources Technolo-gy, 2003, 125(3): 183-189.
  • 8Molina-Giraldo N, Blum P, Zhu K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection [ J ]. International Journal of Thermal Sciences, 2011, 50 (12): 2506-2513.
  • 9Fan R, Jiang Y Q, Yao Y, et al. A study on the per- formance of a geothermal heat exchanger under coupled heat conduction and groundwater advection[ J ]. Energy, 2007, 32(11): 2199-2209.
  • 10Raymond J, Therrien R, Gosselin L, et al. Numerical analysis of thermal response tests with a groundwater flow and heat transfer model [ J ]. Renewable Energy, 2011, 36(1): 315-324.

共引文献39

同被引文献76

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部