期刊文献+

基于显著性检测的增强现实混合跟踪注册方法 被引量:1

Hybrid Tracking Registration of Augmented Reality Based on Salience Detection
原文传递
导出
摘要 针对增强现实系统在复杂环境中跟踪注册稳健性不足以及特征搜索空间大的问题,提出一种结合显著性检测的混合跟踪注册方法。首先,利用均值漂移迭代运算预测候选目标位置,建立峰值位于目标中心的二维高斯函数,生成融合中心先验的视觉显著图;然后,提取目标显著性特征,采用均值漂移算法进行跟踪;另外,根据相似度量系数判断是否利用形变多样相似性匹配算法重定位目标;最后,构建多尺度空间的快速定向二进制描述算法进行局部目标区域的特征检测,来匹配计算得到的注册参数,完成虚实融合。实验结果表明,本方法能有效解决目标跟踪算法在背景杂波、目标遮挡、目标丢失情况下跟踪不稳定及目标检测准确度不高等问题,使增强现实系统更具稳定性。 This study proposes a hybrid tracking registration method based on saliency detection for solving the insufficient robustness of tracking registration in a complex environment and the huge feature-searching space of the augmented reality system.Based on this method,the mean-shift iteration is initially employed to predict the candidate target position.Subsequently,a two-dimensional Gaussian function is constructed with a peak at the target center,and a visual saliency map of the fusion center prior is generated.Next,the target salient feature is extracted,and the mean-shift algorithm is applied to tracking.Furthermore,the similarity measurement coefficient is used to determine whether to utilize the deformation diversity similarity-matching algorithm for relocating the target.Finally,we construct a multiscale-space fast directional binary description algorithm that performs the feature detection and matching calculation with respect to the local target area to obtain the registration parameters,and the virtual-real fusion is completed.The experimental results demonstrate that the proposed method effectively solves the problems of tracking instability and low accuracy of target detection by using the target-tracking algorithm in the cases of background clutter,target occlusion,and target loss,improving the stability and robustness of the augmented reality system.
作者 高凡一 党建武 王阳萍 Gao Fanyi;Dang Jianwu;Wang Yangping(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China;Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics&Image Processing,Lanzhou,Gansu 730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第24期203-211,共9页 Laser & Optoelectronics Progress
关键词 机器视觉 目标跟踪 增强现实 显著性检测 均值漂移 形变多样相似性 算法 machine vision target tracking augmented reality salience detection mean shift deformable diversity similarity algorithm
  • 相关文献

参考文献14

二级参考文献112

共引文献132

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部