期刊文献+

基于经验模态分解和误差校正的短期风速预测 被引量:14

Short Term Wind Speed Prediction Based on EMD and Error Correction
在线阅读 下载PDF
导出
摘要 准确的风速预测对风电扩大并网规模具有积极的推动作用。针对风速的波动性和随机性特征,提出了一种基于EMD、GPR和ISTA的短期风速预测模型。通过EMD对原始风速序列进行分解,利用GPR对分解后的序列子集进行一级预测,同时利用ISTA改进GPR的超参数优化选择过程;并将由此生成的误差序列带入到ISTA优化的GPR中进行二级预测,通过所得误差预测值对原始预测值进行校正并得到最终预测结果。案例分析表明,本文所提出的模型在短期风速预测中具有较高的预测精度。 Accurate wind speed prediction plays an active role in promoting the expansion of wind power grid-connected scale.In the light of the fluctuations and randomness of wind speed,the paper proposes a short-term wind speed prediction model based on empirical mode decomposition(EMD),Gaussian process regression(GPR)and improved state transition algorithm(ISTA).Firstly,the original wind speed sequence is decomposed by EMD,and the subsets of decomposed sequences are predicted by GPR for principal prediction,meanwhile ISTA is used to optimize the hyper-parameters selection of GPR.Then the resulting error sequence is brought into the optimized GPR for subordinate prediction,and the original prediction value is corrected by the obtained error prediction value to achieve the final prediction result.The case study shows that the proposed model has high prediction accuracy in the short-term wind speed prediction.
作者 黄元生 杨磊 高冲 刘诗剑 王光丽 HUANG Yuansheng;YANG Lei;GAO Chong;LIU Shijian;WANG Guangli(School of Economics and Management,North China Electric Power University,Beijing 102206,China;School of Economics and Management,North China Electric Power University,Baoding 071003,China;State Grid Jibei Electric Power Company Engineering Management Company,Beijing 100053,China)
出处 《智慧电力》 北大核心 2020年第1期35-41,共7页 Smart Power
基金 国家自然科学基金资助项目(61973117)~~
关键词 风速预测 集合经验模态分解 误差校正 高斯过程回归 改进状态转移算法 wind speed prediction ensemble empirical mode decomposition error correction Gaussian process regression improved state transition algorithm
  • 相关文献

参考文献10

二级参考文献120

  • 1Gang MU,Mao YANG,Dong WANG,Gangui YAN,Yue QI.Spatial dispersion of wind speeds and its influence on the forecasting error of wind power in a wind farm[J].Journal of Modern Power Systems and Clean Energy,2016,4(2):265-274. 被引量:13
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:592
  • 3丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:187
  • 4Fan Shu, Liao J R, Yokoyama R, et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 474-482.
  • 5Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]//IEEE Power Industry Computer Applications Conference, Sydney, NSW, 2001.
  • 6Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006, 22(1): 43-56.
  • 7Alexandre C, Antonio C, Jorge N, et al. A review on the young history of the wind power short-term prediction[J] . Renewable and Sustainable Energy Reviews, 2008, 12(4): 1725-1744.
  • 8Barthelmie R J, Murray F, Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market[J]. Energy Policy, 2008, 36(5): 1687-1696.
  • 9Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 10Bossanyi E A. Short-term wind speed using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-7.

共引文献314

同被引文献186

引证文献14

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部