期刊文献+

目标跟踪的尺度参数优化研究

Research of Scaling Parameter Optimization for Target Tracking
在线阅读 下载PDF
导出
摘要 鲁棒的尺度判别一直是视频目标跟踪领域中一个富有挑战性的问题.现有的算法在处理复杂图像序列的尺度变化问题时,跟踪速度和精度方面都还有待提升.本文构建两个相关滤波器,加入尺度变换,对目标跟踪的尺度参数进行优化,以提升跟踪速度和精度.首先,构建一维和二维相关滤波器,其中二维位置滤波器实现目标的跟踪以确定目标的位置,一维尺度滤波器对尺度变换进行初步计算得到目标的尺度.然后,组合一维和二维相关滤波器形成三维滤波器,实现最终的目标定位;最后,分析尺度因子参数的取值对跟踪中的速度、中心位置偏移、位置精度和重叠精度的影响.在OTB-2015数据集进行实验,获得了目标跟踪尺度参数的优化取值. Robust scale estimation has been a challenging problem in target tracking. In handling complex scale variation of the image sequence,existing algorithms have yet to be promoted in tracking speed and tracking precision. We build two related filters and introduce the scale transformation,and optimize the scale parameters of the target tracking,which can enhance the tracking speed and precision. First,this paper constructs a 1-dimensional correlation filter and a 2-dimensional correlation filter,and the 2-dimensional filter realizes the target tracking,determines the location of the object. The evaluation of scale transformation is realized by 1-dimensional filter. Then,the two filters are combined into a 3-dimensional filter to complete the detailed dimension space target positioning. Finally,we analyze the effect of scale factor on the tracking speed,centre location error,distance precision and overlap precision to obtain the optimized value. Experiments are performed on the data set OTB-2015,and the optimized value of target tracking scale parameters are acquired.
作者 吴慧君 李梅云 杨文元 Wu Huijun;Li Meiyun;Yang Wenyuan(School of Information Engineering,Zhangzhou Institute of Technology,Zhangzhou 363000,China;Fujian Key Laboratory of Granular Computing and Application,Minnan Normal University,Zhangzhou 363000,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期69-76,共8页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学青年基金项目(61703196) 福建省自然科学基金项目(2018J01549)
关键词 计算机视觉 目标跟踪 相关滤波 尺度估计 参数优化 computer vision target tracking correlation filtering scale estimation parameter optimization
  • 相关文献

参考文献9

二级参考文献154

  • 1ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163.
  • 2AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072.
  • 3PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179.
  • 4VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72.
  • 5SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115.
  • 6COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575.
  • 7BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84.
  • 8HARITAOGLU I, HARWOOD D, DAVIS L. W4:real-time surveillance of people and their activities [ J ]. 1EEE Trans. Patt. Analy. Mach. Intell. ,2000,22(8) :809-830.
  • 9MORAVEC H. Visual mapping by a robot rover[ C ]. Proceedings of the International Joint Conference on Artificial Intel- ligence ( IJCAI ), San Francisco, USA, August 20,1979 : 598-600.
  • 10HARRIS C,STEPHENS M. A combined corner and edge detector[ C]. In 4th Alvey Vision Conference,August 31-Sep- tember 2,1988 : 147-151.

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部