期刊文献+

基于稀疏表示的人脸识别鲁棒性研究 被引量:4

Research on the robustness of face recognition based on sparse representation
在线阅读 下载PDF
导出
摘要 针对人脸识别算法对光照变化敏感的问题,提出一种基于光照鲁棒稀疏表示的人脸识别方法。该方法对图像作小波变换,得到光照归一化图像,通过对光照归一化后人脸图像作稀疏变换,稀疏表示分类得出测试识别结果。本文方法在Yale B人脸库上仿真实验,识别率较高,对光照、表情、遮挡具有一定的鲁棒性。 To solve the problem that face recognition algorithm is sensitive to illumination change,a face recognition method based on illumination robust sparse representation is proposed.In this method,wavelet transform is applied to the image to get the illumination normalized image,and sparse transform is applied to the face image after the illumination normalized,and sparse representation classification is used to get the test recognition result.The method in this paper is simulated on Yale B face database,which has high recognition rate and certain robustness to illumination,expression and occlusion.
作者 朱强军 Zhu Qiangjun(Wanjiang College of Anhui Normal University,Wuhu Anhui,241000)
出处 《电子测试》 2020年第2期47-49,共3页 Electronic Test
基金 安徽省自然科学研究重点项目“基于人脸识别的智能门禁系统研究(KJ2018A0655)” 校级科研项目“基于人脸识别的门禁系统研究(WJKY-201723)”
关键词 人脸识别 稀疏表示 鲁棒性 face recognition sparse representation robustness
  • 相关文献

参考文献3

二级参考文献32

  • 1Zhao W. Face Recognition: A Literature Survey [J]. ACM Computing Surveys, 2003,35(4):399-458.
  • 2Phillips P J, W T Scruggs. FRVT 2006 and ICE 2006 Large-Scale Experimental Results[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(5): 831-846.
  • 3Adini Y,Y Moses,S Ullman. Face Recognition: The Problem of Compensating for Changes in Illumination Direction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):721-732.
  • 4Shan S.Illumination normalization for robust face recognition against varying lighting conditions [C]//. In Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG'03). Washington DC.USA: IEEE Computer Society, 2003: 157- 164.
  • 5Du S,R Ward. Wavelet-based illumination normalization for face recognition [C]//. In IEEE International Conference on Image Processing(ICIP 2005). Washington DC. USA: IEEE Computer Society 2005:954-957.
  • 6Belhumeur P N,D J Kriegman. What is the set of images of an object under all possible illumination conditions [J]. International Journal of Computer Vision, 1998, 28(3):245-260.
  • 7Georghiade A S,P N Belhumeur. From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001, 23(6): 643-660.
  • 8Basri R.,D W Jacobs.Lambertian reflectance and linear subspaces [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence,2003, 25(2):218-233.
  • 9Shashua A,T Riklin-Raviv. The Quotient Image: Class-Based Re-Rendering and Recognition with Varying Illuminations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001, 23(2): 129-139.
  • 10Jobson D J,Z Rahman,G A Woodell. A multiscale retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing,1997, 6(7):965-976.

共引文献23

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部