期刊文献+

Grain Refinement Mechanism and Texture Evolution of Polycrystalline Cu Sheets during the Electromagnetic Forming Process 被引量:1

Grain Refinement Mechanism and Texture Evolution of Polycrystalline Cu Sheets during the Electromagnetic Forming Process
原文传递
导出
摘要 The grain refinement mechanism and texture evolution of electromagnetically formed polycrystalline Cu sheets were investigated using the electron back-scattered diffraction(EBSD) technique. It is found that the average grain size decreases from 35.88 μm to 8.77 μm. The grain refinement was mainly attributed to dynamic recrystallization(DRX) at the grain boundary regions of bulged Cu samples where the inhomogeneous dislocation density and the large lattice misorientation were observed. The DRX mechanisms at the grain boundaries were discussed with respect to the strain-induced grain boundary migration nucleation. Moreover, the orientation distribution function(ODF) of the sample with the strain of 50% demonstrated a strong {110}<211> texture and a relatively weak {001}<100> texture. The texture evolution was discussed using the plastic work values of the grains with various orientations, which were calculated according to the Taylor model and the virtual work principle. The experimental results show that the expended plastic work of the grains with {110} orientation is 9.69 MPa, which is distinctly higher than those of the grains with the {001} and {111} orientations. This indicates that the formation of the {110} orientated texture would be preferred with increasing strain in good agreement with the experimental result. The grain refinement mechanism and texture evolution of electromagnetically formed polycrystalline Cu sheets were investigated using the electron back-scattered diffraction(EBSD) technique. It is found that the average grain size decreases from 35.88 μm to 8.77 μm. The grain refinement was mainly attributed to dynamic recrystallization(DRX) at the grain boundary regions of bulged Cu samples where the inhomogeneous dislocation density and the large lattice misorientation were observed. The DRX mechanisms at the grain boundaries were discussed with respect to the strain-induced grain boundary migration nucleation. Moreover, the orientation distribution function(ODF) of the sample with the strain of 50% demonstrated a strong {110}<211> texture and a relatively weak {001}<100> texture. The texture evolution was discussed using the plastic work values of the grains with various orientations, which were calculated according to the Taylor model and the virtual work principle. The experimental results show that the expended plastic work of the grains with {110} orientation is 9.69 MPa, which is distinctly higher than those of the grains with the {001} and {111} orientations. This indicates that the formation of the {110} orientated texture would be preferred with increasing strain in good agreement with the experimental result.
作者 GAO Xianhui WU Jinjin ZHAO lianquan 郜鲜辉;WU Jinjin;ZHAO Jianquan(Analytical and Testing Center, Huazhong University of Science and Technology)
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1421-1428,共8页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Fundamental Research Program of China(No.2011CB012806)
关键词 grain refinement texture electrom agnetic forming electron back-scattered diffraction grain refinement texture electromagnetic forming electron back-scattered diffraction
  • 相关文献

参考文献1

二级参考文献2

共引文献2

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部