期刊文献+

基于权重的鲁棒性PCA压缩方法

Research on a Robust PCA Compression Method Based on Weights
在线阅读 下载PDF
导出
摘要 为了降低具有噪声的多光谱图像在降维重建后的光谱信息和颜色信息的损失,提出一种基于权重的鲁棒性PCA压缩方法(WRPCA)。先依据人眼的视觉特征,用人类视觉敏感函数(CIE1931标准观察者的色匹配函数)对多光谱图像的光谱进行加权,然后再对加权后的光谱使用Robust PCA法进行降维,最后重构得到图像。实验中WRPCA法与WSPCA法是在同样条件下进行测试。分析实验数据可以看出,WSPCA法由于受噪声影响,其图像压缩重构效果不好,但是WRPCA法不受噪声影响,其重建图像的光谱精度和色度精度都优于WSPCA法。 In order to reduce the loss of spectral and color information of multispectral images with noise after dimensionality reduction,a robust PCA compression method based on weights(WRPCA)was proposed.Firstly,based on the special performance of the human eye,the spectrum of the multispectral image was weighted by the human visual sensitivity function(color matching function of the CIE1931 standard observer),and then the weighted spectrum was used to reduce the image using the Robust PCA method.Finally,the image was reconstructed.In the experiment,WRPCA was tested under the same conditions as the WSPCA method.From the experimental data analysis,it was found that the WSPCA method was not good for the compression and reconstruction of the image due to the influence of noise,while the WRPCA method was not affected by the noise,and could make the reconstructed image in spectral precision and chromaticity.The accuracy and other aspects were superior to the WSPCA method.Therefore,the WRPCA method could achieve effective compression of noise-containing multispectral images and minimize color information loss.
作者 李慧 LI Hui(School of Printing and Packaging,Wuhan University,Wuhan 430079,China)
出处 《包装学报》 2019年第6期84-92,共9页 Packaging Journal
关键词 多光谱图像 图像压缩 噪声 主成分分析法 鲁棒性 WSPCA法 multispectral image image compression image noise principal component analysis robustness WSPCA method
  • 相关文献

参考文献12

二级参考文献92

  • 1唐正宁,车永华,刘涛,安君.基于ICC标准的打印机色彩管理研究[J].包装工程,2007,28(10):123-124. 被引量:4
  • 2王建勇,周晓光,廖启征.一种基于中值-模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904. 被引量:22
  • 3汤顺清.色度学[M].北京:北京理工大学出版社,1991:25-144.
  • 4WILLIAM J C, XIN O, FORAN D J. Moving beyond color: the case for multispectral imaging for brightfield pathology[C]. Proc. of IEEE Interna- tional Symposium on Biomedical Imaging, ISBI' 09, 2009:1111-1114.
  • 5WU Q, ZENG L, ZHENG H, et al.. Precise segmentation of white blood cells by using multi spectral imaging analysis techniques[C]. Proc. of Intelligent Networks and Intelligent Systems, Wuhan: ICINIS'08, 2008:491-494.
  • 6WU C Y, LEE S M, WEN C H, et al.. Multispectral image acquisition system for color spectrum reproduction[C]. Proc. of CVGIP, 2003 : 115 - 122.
  • 7BAKKE M A, FARUP I, HARDEBERG Y J. Multispeetral gamut mapping and visualization-a first attempt[J]. SPIE, 2005,5667:193-200.
  • 8DERKHA W M , ROSEN R M. Spectral colorimetry using LabPQR: An interim connection space [J]. Journalof IS&T, 2006,50(1) :53-63.
  • 9ROSEN R M, DERHAK W M. Spectral gamuts and spectral gamut mapping [J]. SPIE-IS&T, 2006,6062 :60620 K- 1 - 11.
  • 10TSUTSUMI S, ROSEN R M, BERNS S R. Spectral color management using interim connection space based on spectral decomposition[J]. Color Research & Application, 2008,33 (4) :282-299.

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部