期刊文献+

危险货物水路运输知识图谱的构建 被引量:9

Construction of Knowledge Graph for Dangerous Goods in Waterway Transport
在线阅读 下载PDF
导出
摘要 针对当前危险货物相关知识分布零散,导致危险货物相关知识查询程序繁琐、积载隔离判断复杂等问题,以水路运输危险货物为例,研究危险货物水路运输知识图谱的构建方法。通过收集危险货物水路运输相关知识、分析知识特征,得到危险货物领域概念、实体、关系和属性;采用自顶向下的方式搭建知识图谱的框架构建模式层,填充危险货物知识构建数据层,构建危险货物水路运输知识图谱。通过应用案例进行验证,结果表明:该图谱可关联琐碎的危险货物知识、支持综合性危险货物知识检索和实现危险货物积载隔离自动判断。该图谱对于货物间关系的推理,货物储运策略和应急方案的制定和危险货物事故的预防具有重要意义。 There has not been an information index platform for dangerous goods transport and it may take effort to get necessary knowledge for dealing with them.The knowledge graph technology can be a solution.How a knowledge graph for dangerous goods in water transport can be built is demonstrated.Related knowledge is collected and its characteristics analyzed.The concept,entity,relationship and attributes in dangerous goods knowledge domain are defined.The framework of knowledge graph with model layers is devised in a top-down approach.The data layer is constructed by filling knowledge on dangerous goods.The completed knowledge graph supports comprehensive knowledge inquires through integration of associated information from dispersed sources and automatic judgment of a stowage plan.The graph is helpful for suitable making of cargo storage and transport plan and risk control management.
作者 文元桥 张奇 肖长诗 韩栋 WEN Yuanqiao;ZHANG Qi;XIAO Changshi;HAN Dong(Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China;School of Navigation,Wuhan University of Technology,Wuhan 430063,China;Hubei Key Laboratory of Inland Shipping Technology,Wuhan University of Technology,Wuhan 430063,China;National Engineering Research Center for Water Transport Safety,Wuhan University of Technology,Wuhan 430063,China)
出处 《中国航海》 CSCD 北大核心 2019年第4期1-6,共6页 Navigation of China
基金 国家自然科学基金(51679180) 武汉理工大学双一流项目资助 国家重点研发计划(2018YFC1407405 2018YFC0213900)
关键词 知识图谱 本体 危险货物 水路运输 knowledge graph ontology dangerous goods waterway transportation
  • 相关文献

参考文献4

二级参考文献162

  • 1吕媛娟,车阿大.群决策环境下危险品运输风险评价方法[J].工业工程,2014,17(1):72-79. 被引量:4
  • 2任常兴,吴宗之.危险品道路运输风险分级指数法研究[J].安全与环境学报,2006,6(4):126-129. 被引量:46
  • 3陈志军,陈志国,田宏.危险货物道路运输系统的风险评价[J].工业安全与环保,2007,33(6):51-53. 被引量:16
  • 4史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73.
  • 5张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/.
  • 6李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/.
  • 7TREPANIER M, LEROUX M H, NATHALIE M W. Cross-analysis ofHazmat road accidents using multiple databases [ J ]. Accident Analysisand Prevention , 2009, 41(6): 1192 - 1198.
  • 8KHAN F I,IQBAL A, RAMESH N , et al. SCAP: a new methodologyfor safety management based on feedback from credible accident-proba-bilistic fault tree analysis system[J]. Journal of Hazardous Materials,2001, A87: 23 -56.
  • 9ORTMEIER V, REIF W, SCHELLHORN G. Formal safety analysis of aradio-based railroad crossing using deductive cause-consequence analysis(DCC A) [ C ] //5 th European Dependable Computing Conference : luectureNotes in Computer Science . Budapest,Hungary : Springer-Verlag Berlinand Heidelberg GmbH & Co, 2005: 210-224.
  • 10ANDREWS J D, MOSS T R. Reliability and risk assessment [ M ].London: Professional Engineering Pub, 2002: 201 _ 230.

共引文献639

同被引文献50

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部