期刊文献+

采用生成对抗网络的金融文本情感分类方法 被引量:1

Financial text sentiment classification based on generative adversarial network
在线阅读 下载PDF
导出
摘要 针对目前金融领域文本存在标注资源匮乏的问题,提出一种基于生成对抗网络的金融文本情感分类方法.该方法以边缘堆叠降噪自编码器生成鲁棒性特征表示作为输入,在生成对抗过程中,通过向文本表示向量添加噪声向量再生成新样本,应用对抗学习思想优化文本特征表示.在公开的跨领域情感评论Amazon数据集和金融领域数据集上进行实验,并与基准实验对比,结果表明,该方法在平均准确率上有显著提升. There is a shortage of labeling resources in the texts of the financial field today.To address these issues,this paper presents a cross-domain text sentiment classification method based on generative adversarial network.The method uses the marginalized denosing autoencoders(mSDA)to generate a robust feature representation as input.In the process of generating adversarial,by adding to the text representation vector,the noise vector is regenerated to generate a new sample,and the anti-learning idea is applied to optimize the text feature representation.Experiments were conducted on public cross-domain sentiment reviews on Amazon datasets,which showed a significant improvement in average accuracy compared to benchmark experiments.
作者 沈翠芝 SHEN Cuizhi(Concord University College Fujian Normal University,Fuzhou,Fujian 350117,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2019年第6期740-745,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省发展和改革委员会G数字福建金融大数据平台基金资助项目(50015403)
关键词 情感分类 跨领域 生成对抗网络 金融文本分析 sentiment classification cross-domain generative adversarial networks financial text analysis
  • 相关文献

参考文献2

二级参考文献36

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 2赵军,许洪波,黄萱菁,谭松波,刘康,张奇.中文倾向性分析评测技术报告[C]//第一届中文倾向性分析评测会议(The First Chinese Opinion Analysis Evaluation).COAE,2008.
  • 3Weifu Du, Songbo Tan. An Iterative Reinforcement Approach for Fine-Grained Opinion Mining[C]//Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Boulder, Colorado, 2009: 486-493.
  • 4Huifeng Tang, Songbo Tan and Xueqi Cheng. A Survey on Sentiment Detection of Reviews. Expert Systems With Applications[J]. Elsevier. 2009, 36 (7) : 10760-10773.
  • 5Chang CC, Lin CJ. LIBSVM: a library for supportvector machines. 2001. Software available at http:// www. csie. ntu. edu. tw/-cjlin/libsvm.
  • 6Songbo Tan, Xueqi Cheng, Moustafa M. Ghanem, Bin Wang, Hongbo Xu. A Novel Refinement Approach for Text Categorization[C]//Proceedings of the 14^th ACM international conference on Information and knowledge management. Bremen, Germany, 2005: 469-476.
  • 7Songbo Tan. An Effective Refinement Strategy for KNN Text Classifier. Expert Systems With Applications[J]. Elsevier. 2006, 30(2): 290-298.
  • 8Tan S. B. Neighbor-weighted K nearest neighbor for unbalanced text corpus[J]. Expert Systems with Applications. 2005, 28: 667-671.
  • 9John Blitzer, Mark Dredze, Fernando Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classifieation [C]// Proceedings of the 45^th Annual Meeting of the Associ ation of Computational Linguistics. Prague. 2007: 440-447.
  • 10Songbo Tan, Xueqi Cheng, Yuefen Wang and Hongbo Xu. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis [C]//31^st European Conference on Information Retrieval. Springer Berlin: Heidelberg, 2009: 337-349.

共引文献48

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部