期刊文献+

基于粒子群参数优化的同构双种群蚁群算法 被引量:2

Homogeneous Dual Ant Colony Algorithm Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 针对蚁群算法易陷入局部最优、收敛速度较慢的问题,提出一种基于粒子群参数优化的同构双种群蚁群算法。将蚂蚁均分为两个子群,第一子群引入单位距离信息素路径构建算子,加强距离因素和信息素因子的协同作用;第二子群引入粒子群优化算法,对蚁群算法的多个参数在三维空间中进行优化,提高了解的质量。两个种群在参数方面优势互补并进行协同交流,共同促进算法找到全局最优解。针对TSP问题,实验表明,所设计的算法增强了算法的种群多样性。 In order to solve the problem that the ant colony algorithm is easy to fall into local optimum and the convergence speed is slow,a homogeneous dual ant colony algorithm based on particle swarm optimization(PSO)is proposed.The ants are divided into two subgroups.The first subgroup introduces a unit distance pheromone path construction operator to enhance the synergy between distance factors and pheromone factors.The second subgroup introduces PSO algorithm to optimize multiple parameters of ant colony alorithm in three-dimensional space to improve the quality of solution.The two subgroups complement each other's advantages in terms of parameters and communicate synergistically to promote the algorithm to find the global optimal solution.Experiments show that the proposed algorithm enhances the population diversity of the algorithm.
作者 朱宏伟 游晓明 刘升 ZHU Hong-wei;YOU Xiao-ming;LIU Sheng(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Management,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《测控技术》 2019年第9期24-29,共6页 Measurement & Control Technology
基金 国家自然科学基金(61673258,61075115,61403249,61603242)
关键词 蚁群算法 粒子群优化算法 协同交流 TSP ant colony algorithm particle swarm optimization collaborative communication TSP
  • 相关文献

参考文献9

二级参考文献76

  • 1吕英杰,邹和平,赵兵.国内低压电力线载波通信应用现状分析[J].电网与清洁能源,2010,26(4):33-36. 被引量:34
  • 2刘华蓥,林玉娥,王淑云.粒子群算法的改进及其在求解约束优化问题中的应用[J].吉林大学学报(理学版),2005,43(4):472-476. 被引量:33
  • 3郏宣耀,滕少华.双种群改进蚁群算法[J].计算机辅助工程,2006,15(2):67-70. 被引量:5
  • 4Dorigo M, Maniezzo V, Colorni A. Positive Feedback as a Search Strategy[D]. Philadelphia, USA: The Pennsylvania State University, 1991.
  • 5Dorigo M. Optimization, Learning and Natural Algorithms[D]. Philadelphia, USA: The Pennsylvania State University, 1992.
  • 6Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[D].Philadelphia, USA: The Pennsylvania State University, 1996.
  • 7Stutzle T. Parallelization Strategies for Ant Colony Optimi- zation[M]. Berlin, Germany: Springer-Verlag, 1998.
  • 8Ellabib I, Basir O A, Calamai P. A New Ant Colony System Updating Strategy for Vehicle Routing Problem with Time windows[C]//Proc. of the 5th Metaheuristics International Conference. Kyoto, Japan: [s. n.], 2003: 25-28.
  • 9Ellabib I, Calamai P, Basir O. Exchange Strategies for Multiple Ant Colony System[J]. Information Sciences, 2007, 177(5): 1248- 1264.
  • 10Talbi E G, Roux O, Fonlupt C, et al. Parallel Ant Colonies for Combinatorial Optimization Problems[C]//Proc. of Conf. on Parallel and Distributed Processing. Berlin, Germany: Springer, 1999: 239-247.

共引文献96

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部