期刊文献+

基于BGRU-CRF的中文命名实体识别方法 被引量:31

Chinese Named Entity Recognition Method Based on BGRU-CRF
在线阅读 下载PDF
导出
摘要 针对传统的命名实体识别方法存在严重依赖大量人工特征、领域知识和分词效果,以及未充分利用词序信息等问题,提出了一种基于双向门控循环单元(BGRU)神经网络结构的命名实体识别模型。该模型利用外部数据,通过在大型自动分词文本上预先训练词嵌入词典,将潜在词信息整合到基于字符的BGRU-CRF中,充分利用了潜在词的信息,提取了上下文的综合信息,并更加有效地避免了实体歧义。此外,利用注意力机制来分配BGRU网络结构中特定信息的权重,从句子中选择最相关的字符和单词,有效地获取了特定词语在文本中的长距离依赖关系,识别信息表达的分类,对命名实体进行识别。该模型明确地利用了词与词之间的序列信息,并且不受分词错误的影响。实验结果表明,与传统的序列标注模型以及神经网络模型相比,所提模型在数据集MSRA上实体识别的总体F1值提高了3.08%,所提模型在数据集OntoNotes上的实体识别的总体F1值提高了0.16%。 Aiming at the problem that the traditional named entity recognition method relies heavily on plenty of hand-crafted features,domain knowledge,word segmentation effect,and does not make full use of word order information, anamed entity recognition model based on BGRU(bidirectional gated recurrent unit) was proposed.This model utilizes external data and integrates potential word information into character-based BGRU-CRF by pre-training words into dictionaries on large automatic word segmentation texts,making full use of the information of potentialwords,extracting comprehensive information of context,and more effectively avoiding ambiguity of entity.In addition,attention mechanism is used to allocate the weight of specific information in BGRU network structure,which can select the most relevant characters and words from the sentence, effectively obtain long-distance dependence of specific words in the text ,recognize the classification of information expression,and identify named entities.The model explicitly uses the sequence information between words,and is not affected by word segmentation errors.Compared with the traditional sequence labeling model and the neural network model,the experimental results on MSRA and OntoNotes show that the proposed model is 3.08% and 0.16% higher than the state-of-art complaint models on the overall F 1 value respectively.
作者 石春丹 秦岭 SHI Chun-dan;QIN Lin(School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《计算机科学》 CSCD 北大核心 2019年第9期237-242,共6页 Computer Science
关键词 命名实体识别 双向门控循环单元 注意力机制 Named entity recognition Bidirectional gated recurrent unit Attention mechanism
  • 相关文献

参考文献3

二级参考文献26

  • 1Gina-Anne Levow, “The third international Chinese languageprocessing bakeoff: Word segmentation and named entity recog-nition”,Proc. of the Fifth SIGHAN Workshop on Chinese Lan-guage Processing, Sydney, Australia, pp.108-117, 2006.
  • 2H. Zhang, Q. Liu, H.K. Yu, Y.Q. Cheng and S. Bai, “Chi-nese named entity recognition using role model,,, Computa-tional Linguistics and Chinese Language Processing, Vol.8,No.2, pp.29-60,2003.
  • 3H. Zhang, Q. Liu, H.K. Yu, Y.Q. Cheng and S. Bai, “Chi-nese named entity recognition using role model,,, Computa-tional Linguistics and Chinese Language Processing, Vol.8,No.2, pp.29-60,2003.
  • 4W. Chen, Yujie Zhang and Hitoshi Isahara, “Chinese namedentity recognition with conditional random fields”,Proc. of 5thSIGHAN Workshop on Chinese Language Processing, Sydney,Australia, pp.118-121, 2006.
  • 5J. Zhou, L. He, X. Dai and J. Chen, “Chinese named entityrecognition with a multiphase model”,Proc. of 5th SIGHANWorkshop on Chinese Language Processing, Sydney, Australia,pp.213-216, 2006.
  • 6A. Chen, F. Peng, R. Shan and G. Sun, “Chinese named entityrecognition with conditional probabilistic models", Proc. of 5thSIGHAN Workshop on Chinese Language Processing, Sydney,Australia, pp.173-176, 2006.
  • 7J. Lafferty, A. McCallum and F. Pereira, “Conditional ran-dom fields: Probabilistic models for segmenting and labelingsequence data”, Proc. of ICML, San Francisco, USA, pp.282-289, 2001.
  • 8Yue Zhang and Stephen Clark, “Joint word segmentation andPOS tagging using a single perceptron”,Proc. of ACL/HLT,Columbus, OH, pp.888-896, 2008.
  • 9Yue Zhang and Stephen Clark, “A fast decoder for joint wordsegmentation and POS-tagging using a single discriminativemodel”,Proc. of EM NLP, Cambridge, MA, pp.843-852, 2010.
  • 10W. Jiang, Haitao Mi and Qun Liu, “Word lattice reranking forChinese word segmentation and part-of-speech tagging,,,Proc.of COLING, Manchester, UK, pp.385-392, 2008.

共引文献132

同被引文献210

引证文献31

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部