期刊文献+

期权定价模型的理论分析与应用综述 被引量:5

Theoretical Analysis and Application of Option Pricing Model: A Literature Review
在线阅读 下载PDF
导出
摘要 期权定价作为期权交易的核心部分,经过多年的研究已取得丰硕成果。文章基于创新的视角,从理论分析和应用研究两个方面回顾期权定价模型的发展历程,以Black-Scholes模型和标准二叉树模型为基础,详细梳理期权定价模型的改进,并对相关模型的特点进行了总结,展示国内外学者的主要研究成果。 As a core part of options trading, the pricing of options has yielded fruitful results after years of devel. opment. The development history of option pricing model is based on the perspective of innovation, reviewing the de. velopment of option pricing model from the perspective of theoretical analysis and applied research. Based on Black-Scholes model and standard binary tree model, the improvement of option pricing model is elaborated and the characteristics of related models are summarized. The paper discusses the main research results of scholars at home and abroad.
作者 马方方 胡朝阳 MA Fang-fang;HU Zhao-yang
出处 《经济论坛》 2019年第4期117-122,共6页 Economic Forum
基金 北京市教育委员会重点项目"资产型通货膨胀与货币政策选择问题研究"(SZ201310038022)
关键词 期权定价 Black-Scholes(B-S)模型 二叉树模型 Option pricing Black-Scholes (B-S) model Binary tree model
  • 相关文献

参考文献13

二级参考文献75

  • 1朱信凯,韩磊,曾晨晨.信息与农产品价格波动:基于EGARCH模型的分析[J].管理世界,2012,28(11):57-66. 被引量:66
  • 2何志伟,龚朴.可转换公司债券的巴黎期权特征[J].管理学报,2005,2(2):229-234. 被引量:6
  • 3宋玉臣,寇俊生.沪深股市均值回归的实证检验[J].金融研究,2005(12):55-61. 被引量:29
  • 4王少平,彭方平,晓欧(校对).我国通货膨胀与通货紧缩的非线性转换[J].经济研究,2006,41(8):35-44. 被引量:64
  • 5Aase K K. Contingent claims valuation when the security price is a combination of an ITO process and random point process [J] .Stochastic and Their Application, 28 (1988): 185-220.
  • 6Jones E P. Option arbitrage and strategy with large price changes [J]. Finance Econcmaics, 13(1984): 91-113.
  • 7Merton R C. Option pricing when underlying stock returns are discontinuous [J]. Economics, 3(1976): 125-144.
  • 8Scott L O., Pricing stock options in a jump - diffusion model with stochastic volatility and interest rate: application of Fourier inversion methods [J]. Mathematical Finance, 4 (1997): 413-426.
  • 9Hu Y Z, Oksendal B. Fractional White Noise Calculus and Applications to Finance[J]. Infinite Dimensional A- nalysis, Quantum Probability and Related Topics, 2003,6 ( 1 ) : 1-32.
  • 10Necula C. Option Pricing in a Fractional Brownian Motion Environment[J]. Mathematical Reports, 2004, 6 (3) : 259-273.

共引文献67

同被引文献43

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部