期刊文献+

基于区域协方差和目标度的航空侦察图像舰船目标检测 被引量:9

Ship target detection of aerial reconnaissance image based on region covariance and objectness
在线阅读 下载PDF
导出
摘要 为了实现岛岸复杂环境下航空侦察图像舰船目标检测,提出一种基于区域协方差和目标度的显著目标检测方法。在联合条件随机场和字典学习的图像显著性检测框架下,首先提取每个区域增强的sigma特征,并进行稀疏编码,然后又设计基于显著优化的目标度特征,利用信念传播算法推断生成舰船目标显著图,最后应用高效子窗口搜索方法实现舰船目标检测。实验结果表明,新方法的显著图结果目标区域一致高亮,背景杂波抑制效果好,可实现准确的目标检测。 In order to realize the ship target detection of the aerial reconnaissance image under complex environment with island and shore, a salient target detection method is proposed based on regional covariance and objectness. Under the saliency detection framework of conditional random field and dictionary learning, the sigma features of each region are extracted and sparsely coded, and then the objectness feature is designed by using saliency optimization and the belief propagation algorithm is adopted to infer the saliency map of the ship target image, and finally the efficient subwindow search method is applied to achieve ship target detection. The experimental results show that the saliency map of the proposed method has complete target features and good background suppression, and it can achieve accurate target detection.
作者 刘松涛 姜康辉 刘振兴 LIU Songtao;JIANG Kanghui;LIU Zhenxing(Department of Information System, Dalian Naval Academy, Dalian 116018, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期972-980,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61303192) 博士后基金(2015M572694 2016T90979)资助课题
关键词 显著性检测 条件随机场 区域协方差 目标度 高效子窗口搜索 saliency detection conditional random field region covariance objectness efficient subwindow search
  • 相关文献

参考文献3

二级参考文献37

  • 1WU C C, LEE W L, CHEN Y C, et al. Evolution-based hi- erarchical feature fusion for ultrasonic liver tissue charac- terization [ J ]. IEEE Journal of Biomedical and Health In- formatics, 2013, 17 ( 5 ) :967-976.
  • 2BATFITI R. Using mutual information for selecting features in supervised neural net learning [ J ]. IEEE Transactions on Neural Network, 1994, 5(4) :537-550.
  • 3HUANG X, ZHANG L P. An SVM ensemble approach com- bining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):257-272.
  • 4HOANG T V, TABBONE S A. Invariant pattern recognition using the RFM descriptor [ J ]. Pattern Recognition, 2012, 45( 1 ) :271-284.
  • 5ZHOU X L, BHANU B. Feature fusion of face and gait for human recognition at a distance in video[ C]//The 18th International Conference on Pattern Recognition, Hong Kong, China, 2006:529-532.
  • 6DEY A, SING J K, CHOWDHURY S. Fusion of direction- al spatial discriminant features for face recognition [ J ]. Procedia Technology, 2013, 10 : 747-754.
  • 7RAJAGOPALAN A N, RAO K S, KUMAR Y A. Face recognition using multiple facial features [ J ]. Pattern Recognition Letters, 2007, 28 (3) :335-341.
  • 8SUN Q S, ZENG S G, LIU Y, et al. A new method of fea- ture fusion and its application in image recognition [ J ]. Pattern Recognition, 2005, 38 ( 12 ) : 2437-2448.
  • 9GAO G Y, MA H D. Multi-modality movie scene detec- tion using kernel canonical correlation analysis [ C ]// The 21st International Conference on Pattern Recognition, Tsukuba, Japan, 2012 : 3074-3077.
  • 10SHEN X B, SUN Q S, YUAN Y H. Orthogonal canonical correlation analysis and its application in feature fusion [ C ]//The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013 : 151-157.

共引文献14

同被引文献82

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部