期刊文献+

隐私保护关联规则挖掘算法AOPAM的改进 被引量:2

Improvement of AOPAM algorithm in privacy preserving association rule data mining
在线阅读 下载PDF
导出
摘要 随着大数据时代的来临,数据挖掘过程中的隐私泄露给数据挖掘工作者带来了很多问题和挑战.在数据挖掘过程中,如何在保护敏感信息的同时,高效地挖掘出符合精确度的结果,是隐私保护数据挖掘领域的热点问题.文中首先介绍了AOPAM隐私保护关联规则挖掘算法,通过分析该算法的缺陷和不足,引入了递推和分治策略,提出了一种新的改进算法.通过利用已知项求解未知项的思维,简化了高阶矩阵的求逆运算,有效减少了数据库的扫描次数,降低了AOPAM算法在计算重构项集支持度时的时间复杂度.实验表明,以同类型数据测试,与原算法相比,改进后算法在运行时间效率上得到了有效提高. In the era of big data, privacy disclosure has brought various problems and challenges to data mining researchers. Then how to keep sensitive data safe while excavating data effectively is studied. Firstly, a privacy preserving association rule mining algorithm called AOPAM is analyzed. Since the algorithm is not effective in execution time, a modified method based on recursion and divide-and-conquer strategy is proposed to handle the problems of AOPAM. Based on KuU, the proposed method simplifies the inversion of high-order matrix, cuts down the scan times on database, which results in lower time complexity of refactoring support of items in AOPAM. Experiment results show that, compared with the original algorithm, the proposed method has higher runtime efficiency with the same test dataset.
作者 殷英 王逊 黄树成 YIN Ying;WANG Xun;HUANG Shucheng(School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2019年第2期69-73,95,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61772244 61572498)
关键词 数据挖掘 隐私保护 关联规则 data mining privacy preserving association rule
  • 相关文献

参考文献7

二级参考文献137

  • 1张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 2Agrawal R,Srikant R.Privacy-Preserving Data Mining[C].In:Weidong C,Jeffrey F,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.Dallas:ACM Press,2000:439-450.
  • 3Rizvi SJ,Haritsa JR.Maintaining Data Privacy in Association Rule Mining[C].In:Bernstein PA,loannidis YE,Ramakrishnan R,Papadias D,eds.Prec.Of the 28th Int'l Conf.On Very Large Databases.Hong Kong:Morgan Kaufmann Publishers,2002:682-693.
  • 4Agrawal S,Krishnan V,Haritsa JR.On Addressing Effici ency Concerns in Privacy-Preserving Mining[C].In:Lee YJ,Li JZ,Whang KY,Lee D,eds.Proc.of the 9th Int' l Conf.on Database Systems for Advanced Applications.LNCS 2973,Jeju Island:Springer-Verlag,2004:113-124.
  • 5Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy Preserving Mining of Association Rules[C].In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002:217-228.
  • 6Saygin Y,Verykios VS,Clifton C.Using Unknowns to Prevent Discovery of Association Rules[J].ACM SIGMOD Record,2001,30(4):45-54.
  • 7Oliveira SRM,Zaiane OR.Privacy Preserving Frequent Itemset Mining[C].In:Clifton C,EstivillCastro V,eds.Proc.of the IEEE Int'l Conf.on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi:IEEE Computer Society,2002:43-54.
  • 8Kantarcioglu M,Clifton C.Privacy-Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data[J].IEEE Trans.on Knowledge and Data Engineering,2004,16(9):1026-1037.
  • 9Vaidya J,Clifton C.Privacy Preserving Association Rule Mining in Vertically Partitioned Data[C].In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002:639-644.
  • 10曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1996..

共引文献381

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部