期刊文献+

The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q 被引量:1

The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q
在线阅读 下载PDF
导出
摘要 The Q gene in common wheat encodes an APETALA2(AP2) transcription factor that causes the free threshing attribute. Wheat spikelets bearing several florets are subtended by a pair of soft glumes that allow free liberation of seeds. In wild species, the glumes are tough and rigid,making threshing difficult. However, the nature of these "soft glumes", caused by the domestication allele Q is not clear. Here, we found that over expression of Q in common wheat leads to homeotic florets at glume positions. We provide phenotypic, microscopy, and marker genes evidence to demonstrate that the soft glumes of common wheat are in fact lemma-like organs, or so-called sterile-lemmas. By comparing the structures subtending spikelets in wheat and other crops such as rice and maize, we found that AP2 genes may play conserved functions in grasses by manipulating vestigial structures, such as floret-derived soft glumes in wheat and empty glumes in rice. Conversion of these seemingly vegetative organs to reproductive organs may be useful in yield improvement of crop species. The Q gene in common wheat encodes an APETALA2(AP2) transcription factor that causes the free threshing attribute. Wheat spikelets bearing several florets are subtended by a pair of soft glumes that allow free liberation of seeds. In wild species, the glumes are tough and rigid,making threshing difficult. However, the nature of these "soft glumes", caused by the domestication allele Q is not clear. Here, we found that over expression of Q in common wheat leads to homeotic florets at glume positions. We provide phenotypic, microscopy, and marker genes evidence to demonstrate that the soft glumes of common wheat are in fact lemma-like organs, or so-called sterile-lemmas. By comparing the structures subtending spikelets in wheat and other crops such as rice and maize, we found that AP2 genes may play conserved functions in grasses by manipulating vestigial structures, such as floret-derived soft glumes in wheat and empty glumes in rice. Conversion of these seemingly vegetative organs to reproductive organs may be useful in yield improvement of crop species.
出处 《The Crop Journal》 SCIE CAS CSCD 2019年第1期113-117,共5页 作物学报(英文版)
基金 supported by the National Key Program for Transgenic Crop Cultivation (2016ZX09001-001) The CAAS Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission (CAAS-XTCX2016)
关键词 FLORET development SPIKE morphology STERILE LEMMA Wheat Floret development Spike morphology Sterile lemma Wheat
  • 相关文献

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部