期刊文献+

采用ACGAN及多特征融合的高光谱遥感图像分类 被引量:9

Classification of Hyperspectral Remote Sensing Images Using ACGAN and Fusion of Multifeature
在线阅读 下载PDF
导出
摘要 为解决标记样本缺乏、提升分类精度及增强模型容错性等问题,提出一种基于辅助分类器生成对抗网络(ACGAN)的分类方法.首先,将预训练的ACGAN模型作为光谱特征提取器,采用局部二值模式(LBP)算法提取图像的纹理特征;然后,融合光谱特征和纹理特征,由卷积神经网络(CNN)进行分类.在2个广泛使用的数据集上进行实验,结果表明:相较于其他方法,文中方法可显著提高分类精度. In oder to solve the problem for lack of labeled samples,improve the classification accuracy and enhance the fault tolerance of the model,a hyperspectral sensing image classification method based on auxiliary classifier generative adversarial network(ACGAN)is proposed.Firstly,the pre-trained ACGAN model is treated as a spectral feature extractor,and the texture features of the image are extracted by local binary pattern(LBP)algorithm.Then,the spectral features and texture features are merged and calssified by convolutional neural network(CNN).Experiments on two widely used datasets show that compared with other methods,the proposed method can significantly improve the classification accuracy.
作者 刘群 陈锻生 LIU Qun;CHEN Duansheng(College of Computer Science and Technology,Huaqiao University,Xiamen 361021,China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2019年第1期113-120,共8页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金面上资助项目(61370006) 福建省科技计划重点资助项目(2015H0025)
关键词 高光谱图像分类 生成对抗网络 局部二值模式 卷积神经网络 hyperspectral image classification generative adversarial networks local binary pattern convolutional neural networks
  • 相关文献

参考文献10

二级参考文献110

  • 1吴波,张良培,李平湘.非监督正交子空间投影的高光谱混合像元自动分解[J].中国图象图形学报(A辑),2004,9(11):1392-1396. 被引量:27
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:85
  • 3李行,毛定山,张连蓬.高光谱遥感影像波段选择算法评价方法研究[J].地理与地理信息科学,2006,22(6):34-37. 被引量:11
  • 4Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 5Bazi Y, Melgani F. Toward an Optimal SVM Classifieation System for Hyperspectral Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3 374-3 385.
  • 6Melgani F,Bruzzone L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8) :1 778-1 790.
  • 7Jackson Q, Landgrebe D A. Adaptive Bayesian Contextual Classification Based on Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11) : 2 454-2 463.
  • 8Neher R, Srivastava A. A Bayesian MRF Frame- work for Labeling Terrain Using Hyperspectral Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1 363-1 374.
  • 9Li S Z. Markov Random Field Modeling in Image Analysis[M]. New York: Springer Verlag, 2001.
  • 10Lafferty J, McCallum A, Pereira F. Conditional Random Fields.. Probabilistic Models for Segmen ring and Labeling Sequence Data[C]. IEEE International Conference on Machine Learning, Williamstown, 2001.

共引文献80

同被引文献108

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部