期刊文献+

基于BP神经网络的年风速极值数据插补及基本风压计算研究 被引量:1

Interpolation of annual extreme wind speed and basic wind pressure based on BP ANN
在线阅读 下载PDF
导出
摘要 东南沿海台风活动频繁地区的基本风压取值是建筑结构设计的重要依据,但由于历史长的气象站点少,导致建筑结构设计时风压取值混乱。本文构建了优化的BP人工神经网络,以7个建站历史长的参考站点风速观测数据作为输入,以目标站近几年的风速观测数据作为目标值,对网络进行训练和泛化能力检验,得到了良好效果。再以参考站早期的风速观测值作为输入,推测目标站早期无记录时的风速极值,选取台风登陆活动相对频繁的连续30 a风速极值,按照极值I型概率模型计算50 a一遇的风速最大值和基本风压。通过对比分析发现,该方法算得的基本风压值比较合理。 The value of basic wind pressure in areas with frequent typhoon activity in the southeast coast is an important basis for the design of building structures.However,due to the small number of meteorological stations with long history,the value of wind pressure in building structure design is chaotic.In this paper,an optimized BP artificial neural network(ANN)is constructed,and the wind speed observation data of 7 historical long reference sites are used as input,and the wind speed observation data of the target station in recent years are taken as the target value,and the training and generalization ability of the network are tested,and good results are obtained.Then,that the early wind speed observation data of reference station were taken as inputs,estimates the wind speed when there is no record in early stage of the target station.In 30 years consecutive with typhoon landing activities,the extreme wind speed values of every year were chosen to calculate the maximum wind speed once in 50 years according to the extreme I probability model.And then the basic wind pressure was calculated.Through comparative analysis,it is found that the basic wind pressure value calculated by this method is reasonable.
作者 李瑞鸽 李骞 陈小素 祝东红 王建君 沈君鑫 王颖聪 LI Rui-ge;LI Qian;CHEN Xiao-su;ZHU Dong-hong;WANG Jian-jun;SHEN Jun-xin;WANG Ying-cong(School of Civil Engineering&Architecture,Taizhou University,Taizhou 318000, China;Taizhou Construction Engineering Design Review Center,Taizhou 318000, China;Taizhou Jingzhu Construction Project Drawing Review Center,Taizhou 318000, China;Taizhou Meteorological Bureau,Taizhou 318000,China)
出处 《河南城建学院学报》 CAS 2018年第6期15-21,共7页 Journal of Henan University of Urban Construction
基金 浙江省住房和城乡建设厅建设科研项目(2017K185) 国家级大学生创新创业训练计划项目(201810350023)
关键词 BP网络 风速极值 基本风压 数据插补 Back-Propagation network the extreme wind speed value basic wind pressure data interpolation
  • 相关文献

参考文献8

二级参考文献51

  • 1谢军.浅谈相关性修补测风数据的应用[J].科技风,2008(21):43-43. 被引量:1
  • 2王鹏,朱蓉,方艳莹.广东海陵岛风能资源高分辨率数值模拟研究[J].风能,2011(5):54-61. 被引量:4
  • 3连捷.风电场风能资源评估及微观选址[J].电力勘测设计,2007,19(2):71-73. 被引量:23
  • 4GB/18710-2002,风电场风资源评估方法[S].
  • 5阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 6Weymacre N,Martens J P.A fast and robust learning algorithm for feedforward neural networks[J].Neural Networks,1991,4(3):363-369.
  • 7Chan L W,Fallside F.An adaptive training algorithm for back propagation networks[J].Computer Speech and Language,1987,2:205-218.
  • 8Fahlman S C,Lebiere C.The Cascade Correlation Learning Architecture[J].Advance in neural information processing systems,1990,2:524-532.
  • 9Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagation errors[J].Nature,1986,323:533-536.
  • 10Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealing[J].Science,1983,220:671-680.

共引文献365

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部