摘要
Gabor变换在很多领域被认为是非常有用的方法 ,如语音与图像处理 ,雷达、声纳、振动信号的处理与理解等 ,然而实时应用却因其很高的计算复杂性而受到限制 .为了减小计算复杂性 ,我们曾提出了实值离散Gabor变换法 .本文首先简单回顾了作者曾提出的实值离散Gabor变换及其与复值离散Gabor变换的关系 ,然后为了有效地和快速地计算实值离散Gabor变换 ,提出了在临界抽样条件下和在过抽样条件下 ,一维实值离散Gabor变换系数求解的块时间递归算法以及由变换系数重建原信号的块时间递归算法 ,研究了两算法使用并行格型结构的实现方法 ,并讨论和比较了算法的计算复杂性和优越性 .
The Gabor transform has been recognized as being very useful in diverse areas such as speech and image processing,radar,sonar and seismic data processing and interpretation;however,its real time applications were limited due to its high computational complexity.To reduce the computational complexity,the real-valued discrete Gabor transform (RDGT) was presented in our previous work.In this paper,firstly,the 1-D RDGT and its relationship with the complex-valued discrete Gabor transform (CDGT) will be briefly reviewed;secondly,block time-recursive algorithms for the efficient and fast computation of the 1-D RDGT coefficients and for the fast reconstruction of the original signal from the RDGT coefficients will be developed in both critical sampling case and oversampling case;thirdly,unified parallel lattice structures for the implementation of the algorithms will be studied;and finally,the computational complexity and the advantages of the proposed algorithms will be discussed and compared.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2002年第10期1485-1489,共5页
Acta Electronica Sinica
基金
教育部优秀青年教师资助计划项目 (No 1 739)
安徽省自然科学基金 (No 0 1 0 4 2 2 1 0 )
安徽省教育厅自然科学重点研究项目(No 2 0 0 1kj0 2 0zd)