期刊文献+

实值离散Gabor变换块时间递归算法的并行格型结构实现方法 被引量:3

Parallel Lattice Structures of Block Time-recursive Algorithms for Real-valued Discrete Gabor Transforms
在线阅读 下载PDF
导出
摘要 Gabor变换在很多领域被认为是非常有用的方法 ,如语音与图像处理 ,雷达、声纳、振动信号的处理与理解等 ,然而实时应用却因其很高的计算复杂性而受到限制 .为了减小计算复杂性 ,我们曾提出了实值离散Gabor变换法 .本文首先简单回顾了作者曾提出的实值离散Gabor变换及其与复值离散Gabor变换的关系 ,然后为了有效地和快速地计算实值离散Gabor变换 ,提出了在临界抽样条件下和在过抽样条件下 ,一维实值离散Gabor变换系数求解的块时间递归算法以及由变换系数重建原信号的块时间递归算法 ,研究了两算法使用并行格型结构的实现方法 ,并讨论和比较了算法的计算复杂性和优越性 . The Gabor transform has been recognized as being very useful in diverse areas such as speech and image processing,radar,sonar and seismic data processing and interpretation;however,its real time applications were limited due to its high computational complexity.To reduce the computational complexity,the real-valued discrete Gabor transform (RDGT) was presented in our previous work.In this paper,firstly,the 1-D RDGT and its relationship with the complex-valued discrete Gabor transform (CDGT) will be briefly reviewed;secondly,block time-recursive algorithms for the efficient and fast computation of the 1-D RDGT coefficients and for the fast reconstruction of the original signal from the RDGT coefficients will be developed in both critical sampling case and oversampling case;thirdly,unified parallel lattice structures for the implementation of the algorithms will be studied;and finally,the computational complexity and the advantages of the proposed algorithms will be discussed and compared.
作者 陶亮 庄镇泉
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第10期1485-1489,共5页 Acta Electronica Sinica
基金 教育部优秀青年教师资助计划项目 (No 1 739) 安徽省自然科学基金 (No 0 1 0 4 2 2 1 0 ) 安徽省教育厅自然科学重点研究项目(No 2 0 0 1kj0 2 0zd)
关键词 实值离散GABOR变换 并行格型结构 块时间递归算法 RDGT real-valued discrete Gabor transforms parallel lattice structures block time-recursive algorithms
  • 相关文献

参考文献14

  • 1Gabor D.Theory of communication [J].J.Inst.Electr.Eng.,1946,93(3):429-457.
  • 2Bastiaans,M.Gabor's expansion of a signal into gaussian elementary signals [J].Opt.Eng.,1981,20(4):594-598.
  • 3Wexler,J and Raz,S.Discrete Gabor expansions [J].Signal Processing,1990,21(3):207-220.
  • 4Qian S,Chen D.Discrete Gabor transforms [J].IEEE Trans on Signal Processing,1993,21(7):2429-2438.
  • 5Qian S,Chen D.Joint time-frequency analysis [J].IEEE Signal Processing Magazine,1999,6(2):52-67.
  • 6Wang Liwa,Chen Chin-Tu,Lin Wei-Chung.An efficient algorithm to compute the complete set of discrete Gabor coefficients [J].IEEE Trans on Image Processing,1994,3(1):87-92.
  • 7Qiu Sigang,Zhou Feng,Crandall Phyllis E.Discrete Gabor transforms with complexity O(NlogN) [J].Signal Processing,1999,77(2):159-170.
  • 8Tao Liang,Kwan H K.Real Discrete Gabor Expansion for Finite and Infinite Sequences[A].Proc.of ISCAS'2000 [C].Switzerland:ISCAS,2000.
  • 9Tao Liang,Chen Guangju.Real-valued Discrete Gabor Transforms for Discrete Signal and Image Representation [J].Chinese Journal of Electronics,2001,10(4):444-449.
  • 10陶亮,张德龙,H.K.Kwan.离散信号和图象的实数形式Gabor变换[J].中国图象图形学报(A辑),2000,5(10):840-845. 被引量:10

二级参考文献16

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 21,Gabor D.Theory of communication.J.Inst.Electr.Eng.,1946,93(III):429~457.
  • 32,Gertner I,Zeevi Y.On the zak-gabor representation of image.In:Proceeding of SPIE,Visual Commun.Image Processing,1990:1738~1748.
  • 43 Bastiaans M.Gabor's expansion of a signal into gaussionelementary signals,Opt.Eng.1981,20(4):594~598.
  • 54,Wexler J,Raz S.Discrete Gabor transforms.Signal Processing,1990,21(3):207~220.
  • 65,Qian S,Chen D.Discrete Gabor transforms.IEEE Trans Signal Processing,1993,21(7):2429~2438.
  • 76,Daugman J.Complete discrete 2-D Gabor transform by neural networks for image analysis and compression.IEEE Trans Acoust.,Speech,Signal Processing,1988,36(7):1169~1179.
  • 87,Ibrahim A,Azimi-Sadjadi M R.A fast learning algorithm for gabor transformation.IEEE Trans Image Processing,1996,5(5):171~175.
  • 98,Tao Liang,Kwan H K.2-D real gabor transform.In:Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering,Edmonton,Alberta,Canada,1999,831~834.
  • 109,Bracewell R M.The discrete hartley transform,J.Opt.Soc.Am.,1983,73(12):1932~1835.

共引文献144

同被引文献27

  • 1何坤,李健,乔强,周激流.非平稳环境下基于小波变换的信号去噪[J].信号处理,2005,21(3):244-248. 被引量:6
  • 2王忠仁,林君,李文伟.基于Wigner-Ville分布的复杂时变信号的时频分析[J].电子学报,2005,33(12):2239-2241. 被引量:28
  • 3秦绪佳,盛柯芳,徐晓刚.基于经验模式分解的数字曲线光顺算法[J].中国机械工程,2007,18(6):715-718. 被引量:3
  • 4Gabor D.Theory of communication[J].J Inst Electr Eng, 1946,93(3): 429-457.
  • 5Bastiaans M.Gabor's expansion of a signal into Gaussian elementary signals[J].Opt Eng, 1981,20(4) :594-598.
  • 6Wexler J,Raz S.Discrete Gabor expansions[J].Signal Processing,1990, 21(3) :207-220.
  • 7Qian S,Chen D.Discrete Gabor transforms[J].IEEE Transactions on Signal Processing, 1993,41(7) :2429-2438.
  • 8Morris J M,Liu Y.Discrete Gabor expansion of discrete-time signals in l2(Z) via frame theory[J].IEEE Signal Processing Magazine, 1994,40(2):151-181.
  • 9Daugman J.Complete discrete 2-D Gabor transform by neural networks for image analysis and compression[J].IEEE Trans Aeoust, Speech,Signal Processing, 1988,36(7): 1169-1179.
  • 10Tao L,Kwan H K.Real discrete Gabor expansion for finite and infinite sequences[C]//Proceedings of the 2000 IEEE International Symposium on Circuits and Systems,Geneva,Switzerland,2000,4 : 637-640.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部