期刊文献+

基于纹理特征和SVM分类器的铝铸件类型识别 被引量:3

Recognition of Aluminum Casting Based on Texture Feature and SVM Classifier
在线阅读 下载PDF
导出
摘要 随着全球经济的增长和铝铸件的广泛使用,全球铝铸件消费量逐年上升.由于应用场合不同,导致有各种各样的铝铸件,它们有不同的形状、结构、颜色、质地等.图像的纹理分类作为图像处理应用中的一个重要方面,本文通过分析铝铸件的特点,分别采用灰度共生矩阵、Gabor小波变换提取图像纹理特征,并加以融合对比,使用支持向量机SVM分类算法对特征进行分类.通过实验可知,使用Gabor小波变换对铝铸件分类的识别准确率和识别时间上效果都是最好的. With the growth of the global economy and the widespread use of aluminum profiles, the global consumption of aluminum castings has been increasing year by year. Due to the different applications, there are a variety of aluminum castings, they have different shapes, structures, colors, textures and so on. As an important aspect of the image processing application, this study analyzes the features of aluminum castings, extracts the texture features of the image by using the gray level co-occurrence matrix and Gabor wavelet transform, respectively, and compares them with the SVM classification algorithm of SVM feature classification, test recognition accuracy, experimental results were compared for the classification of aluminum castings obtained Gabor wavelet transform using both the recognition accuracy or recognition of time on the results are the best.
作者 吴阳 刘振华 周晓锋 张宜弛 WU Yang;LIU Zhen-Hua;ZHOU Xiao-Feng;ZHANG Yi-Chi(School of Mechano-Electronie Engineering, Taihu University of Wuxi, Wuxi 214064, China;Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China)
出处 《计算机系统应用》 2018年第8期281-285,共5页 Computer Systems & Applications
关键词 铝铸件 灰度共生矩阵 GABOR小波变换 分类 识别 aluminum castings gray level co-occurrence matrix gabor wavelet transform classification recognition
  • 相关文献

参考文献1

二级参考文献9

  • 1朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131. 被引量:34
  • 2Jung C R, Schramm R. Rectangle detection based on a windowed Hough transform [ C ]//Proceedings of Brazilian Symposium on Computer Graphics and Image Processing. Curitiba, Brazil, 2004, XVII: 113-120.
  • 3Illingworth J, Kittler J. A survey of the Hough transform [ J]. Computer Vision, Graphics and Image Processing, 1988,44 ( 1 ) : 87-116.
  • 4Xu Lei, Oja E, Kuhtanen P. A new curve detection method, randomized Hough transform (RHT) [ J]. Pattern Recognition Letters, 1990,11(5): 331-338.
  • 5Daugman J G. High confidence visual recognition of persons by a test of statistical independence [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 ( 11 ) : 1148-1161.
  • 6Victor Ayala-Ramirez, Carlos H Garcia-Capulin, Arturo Perez- Garcia,et al. Circle detection on images using genetic algorithms [ J ]. Pattern Recognition Letters, 2006,27 (6) : 652- 657.
  • 7Yuen H K, Princen J, Illingworth J,et al. Comparative study of Hough transform methods for circle finding [ J]. hnage and Vision Computing, 1990,8 ( 1 ) : 71 - 77.
  • 8Teutsch C, Berndt D, Trostmann E,et al. Real-time detection of elliptic shapes for automated object recognition and object tracking [C]//Proceedings of the SPIE Conference on Machine Vision Applications in Industrial Inspection. Magdeburg, Germany, 2006, XIV: 171-179.
  • 9Duda Richard O, Hart Peter E. Use of the Hough transformation to detect lines and curves in pictures [ J]. Communications of the ACM, 1972,15(1): 11-15.

共引文献48

同被引文献26

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部