期刊文献+

Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity

Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity
原文传递
导出
摘要 Cadmium-free Ⅰ-Ⅲ-Ⅵ quantum dots (QDs), represented by Cu-In-S (CIS), are widely investigated for their non-toxicity and tunable emission properties. In this work, Zn-Cu-In-S (ZCIS) alloyed QDs were synthesized via a solvothermal approach by heating up a mixture of the corresponding metal precursors and sulphur powder with dodecanethiol in oleylamine media, and the fluorescent intensity was greatly enhanced by coating ZnS (ZS) shell. By changing the ratio of Cu, the as prepared ZCIS-ZS QDs showed composition-tunable photoluminescent (PL) emission over the visible spectral window from about 500 nm to 620 rim, which is much wider than that of CIS QDs. Moreover, the influence of excitation wavelength, reaction temperature and time on the optical properties of the ZCIS-ZS QDs was also studied. This research provides a feasible and simple approach to prepare ZCIS-ZS QDs with large tunable spectral range on visible region, which could greatly contribute to the development of potential applications due to their non-toxicity and excellent optical properties. Cadmium-free Ⅰ-Ⅲ-Ⅵ quantum dots (QDs), represented by Cu-In-S (CIS), are widely investigated for their non-toxicity and tunable emission properties. In this work, Zn-Cu-In-S (ZCIS) alloyed QDs were synthesized via a solvothermal approach by heating up a mixture of the corresponding metal precursors and sulphur powder with dodecanethiol in oleylamine media, and the fluorescent intensity was greatly enhanced by coating ZnS (ZS) shell. By changing the ratio of Cu, the as prepared ZCIS-ZS QDs showed composition-tunable photoluminescent (PL) emission over the visible spectral window from about 500 nm to 620 rim, which is much wider than that of CIS QDs. Moreover, the influence of excitation wavelength, reaction temperature and time on the optical properties of the ZCIS-ZS QDs was also studied. This research provides a feasible and simple approach to prepare ZCIS-ZS QDs with large tunable spectral range on visible region, which could greatly contribute to the development of potential applications due to their non-toxicity and excellent optical properties.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第6期942-948,共7页 材料科学技术(英文版)
基金 supported financially by the National Natural Science Foundation of China(No.51101013) the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-14-012A2 and FRF-TP-15-007A3)
关键词 Emission property ZnCulnS Quantum dots Fluorescence intensity Emission property ZnCulnS Quantum dots Fluorescence intensity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部