期刊文献+

稀疏子孔径区域内正交多项式重构波前 被引量:1

Wavefront Reconstruction with Orthonormal Polynomials in a Sparse Subsperture Area
在线阅读 下载PDF
导出
摘要 提出了基于稀疏子孔径正交多项式的拼接算法.该算法采用Mathematica9.0对圆域Zernike多项式进行Gram-Schimdt正交化,构造出稀疏子孔径区域内的标准正交多项式——Z-sparse多项式,并采用该正交多项式进行稀疏子孔径区域波前数据的拟合.实验表明:根据算法重构与直接检测的全孔径波前残差PV=0.071 9λ,RMS=0.007 4λ.该算法可对所提取的七个子孔径波前像差数据进行有效的拼接. A stitching algorithm based on orthonormal polynomials in a sparse subsperture area was proposed.In this algorithm, Gram-Schimdt orthogonalization of circular Zernike polynomials is performed by using Mathematica9. 0,and the standard orthonormal polynomials,Z-sparse polynomials,which show orthogonality in sparse subaperture area were established. Wavefront data in sparse subaperture area can be fitting with the new orthogonal polynomials. The experimental results show that the wavefront residuals of peak to valley value and root mean square are 0. 071 9λ and 0. 007 4λ respectively compared with direct testing result. Therefore the algorithm can effectively stitch the seven subapertureswavefront data of interferometry.
作者 罗倩 吴时彬 汪利华 杨伟 范斌 LUO Qian;WU Shi-bin;WANG Li-hua;YANG Wei;FAN Bin(Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;University of Chinese Academy of Sciences, Beij ing 100049, China)
出处 《光子学报》 EI CAS CSCD 北大核心 2018年第6期201-208,共8页 Acta Photonica Sinica
基金 国家重点研发计划(No.2016YFB0500200)资助~~
关键词 稀疏子孔径 正交多项式 Mathematica符号计算 拼接检测 波面重构 Sparse subaperture Orthogonal polynomials Mathematica symbol calculation Stiching;wavefront reconstruction
  • 相关文献

参考文献7

二级参考文献59

  • 1徐清兰,伍凡,吴时彬,王家金.轻质碳化硅平面反射镜超光滑表面加工[J].光电工程,2004,31(9):22-25. 被引量:31
  • 2侯溪,伍凡,杨力,吴时彬,陈强.环形子孔径拼接算法的精度影响因素分析[J].光电工程,2005,32(3):20-24. 被引量:4
  • 3侯溪,伍凡,杨力,吴时彬,陈强.子孔径拼接干涉测试技术现状及发展趋势[J].光学与光电技术,2005,3(3):50-53. 被引量:31
  • 4单福忠.空间相机光机系统光机热集成分析及优化设计[M].长春:中国科学院长春学精密机械研究所,1999..
  • 5Chow W W, George N L. A Method for Subaperture Testing Interferogram Reduction [J]. Optics Letters(S0146-9592), 1983, 8(9): 468-470.
  • 6Lawrence G N, Day R D. Interferomertric characterization of full spheres: data reduction techniques [J]. Applied Optics (S0003-6935), 1986, 25(4): 503-509.
  • 7Catanzaro Brian E, Thomas James A, Cohen Eri J. Comparison of full-aperture interferometry to sub-aperture stitched interferometry for a large diameter fast mirror [J]. Proceedings of SPIE(S0277-786X), 2001, 4444: 224-237.
  • 8Kim C J. Polynomial fit ofinterferograms [J]. Applied Optics(S0003-6935), 1982, 21(24): 4521-4525.
  • 9Otsubo M, Okada K, Tsujiuchi J. Measurement of large plane surface shapes by connecting small-aperture interferograms [J]. OpticalEngineering(S0091-3286), 1993, 31(5): 1073-1079.
  • 10SJODAHL Mikael, OREB Bozenko F. Stitching interferometric measurement data for inspection of large optical components [J].OpticalEngineering(S0091-3286), 2002, 41(2): 403-408.

共引文献158

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部