期刊文献+

一类2n阶具有转移条件的对称微分算子的特征值问题

The Eigenvalue Problems for 2n-order Symmetric Differential Operators with Transmission Conditions
原文传递
导出
摘要 研究了具有边界条件及转移条件的2n阶对称微分算子的特征值问题.首先构建了新的Hilbert空间使得所研究的微分算子在新的Hilbert空间中是自共轭的.然后利用微分算子谱分析经典方法,得到了λ是边值问题的特征值的充要条件,并给出了边值问题特征值的某些特点. In this paper, we study the eigenvalue problems of the 2n-order symmetric differential operators with boundary and transmission conditions. First, we construct a new Hilbert Space, so that the investigated differential operators are self-adjoint. And then, by using the basic methods of spectral analysis, we obtain the sufficient and necessary conditions for λ to be the eigenvalue of the boundary value problems and some properties of the eigenvalues of the boundary value problems.
作者 陈文娟 孙炯 CHEN Wen-juan;SUN Jiong(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China)
出处 《数学的实践与认识》 北大核心 2018年第11期200-205,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11161030,11561150,11401325)
关键词 对称微分算子 转移条件 特征值 边值问题 symmetric differential operator transmission conditions eigenvalues boundaryvalue problems
  • 相关文献

参考文献2

二级参考文献28

  • 1王爱平,孙炯.一类具有转移条件的微分算子的自共轭性[J].内蒙古大学学报(自然科学版),2005,36(6):618-621. 被引量:13
  • 2Mukhtarov O Sh. Discontinuous boundary-value problem with spectral paz'ameter in boundary conditions [J]. Turkish Journal of Mathematics, 1994, 18: 183-192.
  • 3Demirci M, Akdogan Z, Mukhtarov O Sh. Asymptotic behavior of eigenvalues and eigenfunctions of one discontinuous boundary-value problem [J]. International Journal of Computational Cognition, 2004, 2(3): 101-113.
  • 4Mukhtarov O Sh, Demir H. Coerciveness of the discontinuous initial-boundary value problem for parabolic equations[J]. Israel Journal of Mathomatics, 1999, 114: 239-252.
  • 5Titeux I, Yakubov Ya. Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients[J]. Math Models Methods Appl. Sc. , 1997, 7(7): 1035-1050.
  • 6Mukhtarov O Sh, Yakubov S. Problems for differential equations with transmissions conditions [J]. Applicable Analysis, 2002, 81: 1033-1064.
  • 7Buschmann D, Stolz G, Weidmann J. One-dimensional SchrSdinger operators with local point interactions[J]. Reine Angew Math, 1995, 467: 169-186.
  • 8Kadakal M, Mukhtarov O Sh, Muhtarov F S. Some spectral problems of Sturm-Liouville problem with transmission conditions[J}. Math Meth Appl Sci, 2007, 30: 1719-1738.
  • 9M A 纳依玛克.线性微分算子[M].北京:科学出版社,1964.
  • 10Zettle A.Sturm-Liouville Problem.Spectral Theory and Computatinal Methods of Sturm-Liouville Problem[M]. Marcel Dekker, Berlin, 1997, 1-104.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部