摘要
研究了具有边界条件及转移条件的2n阶对称微分算子的特征值问题.首先构建了新的Hilbert空间使得所研究的微分算子在新的Hilbert空间中是自共轭的.然后利用微分算子谱分析经典方法,得到了λ是边值问题的特征值的充要条件,并给出了边值问题特征值的某些特点.
In this paper, we study the eigenvalue problems of the 2n-order symmetric differential operators with boundary and transmission conditions. First, we construct a new Hilbert Space, so that the investigated differential operators are self-adjoint. And then, by using the basic methods of spectral analysis, we obtain the sufficient and necessary conditions for λ to be the eigenvalue of the boundary value problems and some properties of the eigenvalues of the boundary value problems.
作者
陈文娟
孙炯
CHEN Wen-juan;SUN Jiong(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China)
出处
《数学的实践与认识》
北大核心
2018年第11期200-205,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11161030,11561150,11401325)
关键词
对称微分算子
转移条件
特征值
边值问题
symmetric differential operator
transmission conditions
eigenvalues
boundaryvalue problems