期刊文献+

基于NSST域的改进加权非负矩阵分解的图像融合 被引量:3

Image Fusion Based on Improved Weighted Nonnegative Matrix Decomposition Based on NSST Domain
在线阅读 下载PDF
导出
摘要 针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态更新权值矩阵,更好地提取图像特征信息。对于高频子带,采用改进双通道脉冲耦合神经网络的算法,链接强度值采用块的梯度值,更好地保留图像的微小细节信息;最后,经过非下采样Shearlet的逆变换得到融合图像。实验表明,将加权非负矩阵分解与双通道脉冲耦合神经网络相结合,不仅能很好的提取图像的特征信息,保留更多细节信息;同时双通道的脉冲耦合神经网络的方法能提高算法运行效率。 Aiming at the problem of high complexity in weighted nonnegative matrix decomposition,an improved algorithm of image fusion based on weighted nonnegative matrix decomposition and dual channel pulse coupled neural network is proposed. Firstly,the Shearlet transform is applied to the two source images that have been registered. Then,the improved WNMF algorithm is used to dynamically update the weight matrix for the image low frequency subband and the image feature information is extracted better. The algorithm of improving the dual channel pulse coupled neural network is used to improve the detail information of the image by using the gradient value of the block proposed. Finally,the fusion image is obtained by inverse transformation of the non-subsampled Shearlet. Experiments show that the combination of weighted nonnegative matrix decomposition and pulsed coupled neural network not only can extract the characteristic information of the image,but also keep more detailed information. At the same time,the dual channel pulse coupled neural network method can improve the efficiency of the algorithm.
出处 《科学技术与工程》 北大核心 2018年第3期268-273,共6页 Science Technology and Engineering
基金 山西省自然科学基金(2015011045)资助
关键词 加权非负矩阵分解 非下采样剪切波变换 双通道脉冲耦合神经网络 链接强度 WNMF non-subsampled Shearlet transform dual channel PCNN link strength
  • 相关文献

参考文献7

二级参考文献86

  • 1李玲玲,丁明跃,周成平,彭晓明,张天序.一种基于提升小波变换的快速图像融合方法[J].小型微型计算机系统,2005,26(4):667-670. 被引量:28
  • 2苗启广,王宝树.基于非负矩阵分解的多聚焦图像融合研究[J].光学学报,2005,25(6):755-759. 被引量:25
  • 3胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:103
  • 4苗启广,王宝树.图像融合的非负矩阵分解算法[J].计算机辅助设计与图形学学报,2005,17(9):2029-2032. 被引量:23
  • 5郭兴旺,高功臣,吕珍霞.基于奇异值分解的红外热图像序列处理[J].北京航空航天大学学报,2006,32(8):937-940. 被引量:11
  • 6John J Lewis,Robert J O′Callaghan,Stavri G Nikolov,et al.Pixel and Region-Based Image Fusion with Complex Wavelets[J].Information Fusion,2007,8(2):119-130.
  • 7Gemma Piella.A General Framework for Multiresolution Image Fusion:From Pixels to Regions[J].Information Fusion,2003,4(4):259-280.
  • 8Ye Y S,Zhao B J,Tang L B.SAR and Visible Image Fusion Based on Local Non-Negative Matrix Factorization[C]//The Ninth International Conference on Electronic Measurement & Instruments,Beijing,2009:263-266.
  • 9Huang Z,Yu X C,Wang G A,et al.Application of Several Non-Negative Matrix Factorization-Based Methods in Remote Sensing Image Fusion[C]//Fifth International Conference on Fuzzy Systems and Knowledge Discovery,Tianjin,2008:29-33.
  • 10Zhang S W,Chen J,Miao D D.An Image Fusion Method Based on WNMF and Region Segmentation[C]//2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application,Wuhan,2008:282-285.

共引文献75

同被引文献54

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部