期刊文献+

α相对高强韧Ti-55531合金强化及断裂机制的影响 被引量:5

Influence of α Phase on Strengthening and Fracture Mechanisms of High Strength-Toughness Ti-55531 Alloy
原文传递
导出
摘要 采用SEM、OM及XRD等分析方法,结合不同的热处理工艺,系统分析了α相的形态、含量及尺寸等特征参数对高强韧Ti-55531合金强化及断裂机制的影响。结果表明:双态组织,随等轴α_p含量降低,尺寸减小,次生片层α_s含量增多,长度变长,宽度更窄;导致合金的强度提高,塑性降低。片层组织,随次生α_s片层的粗化,合金强度和塑性都下降。全β晶粒组织,强度较低,塑性很好。双态和片层组织Ti-55531合金的断裂方式均为穿晶解理、微孔聚集型和沿晶开裂的混合断裂机制;随α_p含量降低和尺寸减小,α_s含量和尺寸增加,微孔聚集断裂数量降低,穿晶解理和沿晶开裂特征数量增加。 In order to find the influence of a phase on tensile fracture behavior of high strength-toughness Ti-55531 alloy, different heat treatments and analysis methods including SEM, OM and XRD were adopted. Results show that the content of secondary a phase in bimodal microstructures is increased and the scale becomes finer with decreasing of content and scale of primary a phase, so that the strength of alloy increases and ductility decreases. In lamellar microstructures, with coarsening of secondary a phase, both strength and ductility of the alloy are decreased. In full fl microstructures, alloys get well in ductility but bad in strength. Both fracture modes of bimodal and lamellar microstructures are mixed modes including transgranular cleavage, microvoid accumulations and intergranular crack fracture. With decreasing of content and scale of primary a phase, the content of secondary a phase increases and the scale is coarsened, the percentage of microvoid accumulations fracture is decreased while percentage of transgranular cleavage and intergranular crack fracture is increased.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2018年第1期103-107,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51471136) 国家国际科技合作(中法合作)项目资助(2015DFA151430)
关键词 高强韧Ti-55531合金 微观结构 力学性能 强化机制 断裂机制 high strength-toughness Ti-55531 alloy microstructure properties strengthening mechanism fracture mechanism
  • 相关文献

参考文献2

二级参考文献36

  • 1马援.强调性能优 势旨在后来居上 空客精心设计A350 XWB[J].国际航空,2007(8):15-17. 被引量:3
  • 2陈亚莉.开创复合材料应用新时代——波音787飞机复合材料选材和制造工艺[J].国际航空,2007(8):20-22. 被引量:8
  • 3Williams J C, Starke E A. Jr Acta Materialia[J], 2003, 51: 5775.
  • 4Boyer R R, Briggs R D. Journal of Materials and ~erformance[J], 2005, 14(6): 681.
  • 5Boyer R R. Journal of the Minerals, Metals and Materials[J], 1980, 32:61.
  • 6Terlinde G T, Duerig T W, Willams J C. Metallurgical Transactions A[J], 1983, 14:2101.
  • 7Duerig T W, Terlinde G T, Willams J C. Metallurgical Transactions A [J], 1980, 11 : 1987.
  • 8Lutjering G, Albrecht J, Sauer C et al. Materials Science and Engineering[J], 2007, 468-470:201.
  • 9Sauer C, Litjering G. Journal of Materials Processing Technology[J], 2001, 117:311.
  • 10Lutjering G, Willams J C. Titanium[M]. Berlin: SpringerVerlag, 2003:153.

共引文献149

同被引文献41

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部