期刊文献+

高显著性的时空金字塔精简描述符算法研究 被引量:1

Discriminative spatio-temporal pyramid compact representations algorithm
在线阅读 下载PDF
导出
摘要 当传统时空金字塔层数较多时,特征描述符的维数会非常高,使得此类描述符在训练和测试阶段计算效率非常低。此外,在时空金字塔的分层及每层立方体单元的划分中,至今仍然采用手动划分视频,使得视频划分策略没有强的理论依据。鉴于以上缺点,提出一种高显著性的时空金字塔精简描述符算法。形成的新描述符是所有时空金字塔层中每个立方体单元局部特征的权重和,而不是把所有立方体单元局部特征描述符串联起来形成一个巨大的特征描述符,每个立方体单元的权重可以通过偏最小二乘法自动获取,由此产生的视频全局描述符精简并且具有高的显著性。此外通过观测其精细立方体单元的权重,还可以展现出显著性时空金字塔每个立方体单元及每层金字塔的贡献,由此,可以根据权重自动划分视频。采用HMDB51和YouTube两个动作数据库进行实验验证,与时空金字塔描述符和超稀疏编码向量相比,此描述符精简并能在低维度下取得较好的识别效果。 In Spatio-Temporal Pyramid Representation(STPR), the video is divided into a series of increasingly finer cubic unit cells on each pyramid level. Local features are extracted from all of the cubic unit cells and are concatenated to rebuild a high dimensional feature vector. As a result, when the samples are trained and tested, high computational costs are required. Moreover, because the partitioning strategy for the video is divided into parts which is designed by hand,there is poor theoretical evidence for the optimal partitioning strategy for good behavior recognition. This paper proposes discriminative STPR, which is a new representation that constructs the video feature as a weighted sum of semi-local features over all pyramid levels. This weights are automatically calculated by using partial least square method to maximize a discriminative power. The resulting representation is compact and reserves high discriminative power. Furthermore, this representation can reveal the distinctive cubic unit cells and the number of pyramid level simultaneously by observing the optimal weights of cubic unit cells generated from the fine cubic unit cells.
出处 《计算机工程与应用》 CSCD 北大核心 2018年第1期210-216,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61472196)
关键词 时空金字塔 偏最小二乘法 稀疏编码 池化技术 底层特征 Spatio-Temporal Pyramid Representation(STPR) Partial Least Square(PLS)method sparse coding pooling low-level feature
  • 相关文献

参考文献3

二级参考文献50

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:145
  • 2杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(B12):1-3. 被引量:103
  • 3陈伏兵,高秀梅,张生亮,杨静宇.基于分块PCA的人脸识别方法[J].小型微型计算机系统,2006,27(10):1943-1947. 被引量:10
  • 4张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 5WEINLAND D, RONFARD R, BOYER E. A survey of vision-based methods for action representation, segmentation and recognition [J]. Computer vision and image understanding, 2011, 115(2): 224-241.
  • 6NIEBLES J C, WANG H, LI F. Unsupervised learning of human action categories using spatial-temporal words [J]. International journal of computer vision, 2008, 79(3): 299-318.
  • 7LAPTEV I. On space-time interest points [J]. International journal of computer vision, 2005, 64(2/3): 107-123.
  • 8WANG H, KLASER A, SCHMID C, et al. Action recognition by dense trajectories [C]// CVPR 2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C.: IEEE Computer Society, 2011: 3169-3176.
  • 9OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381(6583): 607-609.
  • 10OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set: a strategy employed by V1? [J]. Vision research, 1997, 37(23): 3311-3325.

共引文献20

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部