期刊文献+

基于机器学习的宋词风格识别 被引量:4

Classification of SonCi style using machine learning algorithms
在线阅读 下载PDF
导出
摘要 使用多种机器学习算法对宋词的风格进行了分类研究,通过比较测试结果选择了较优算法和较优的参数配置。同时,对实验的结果进行了回溯分析,定量分析了哪些单字对宋词风格的判定起到更大的作用。这种分析方法可以推广,用来作为作者写作风格的特征进行更进一步的研究分析。 This paper presents a study of the style of SonCi using many machine learning algorithms whose parameters are optimized by the results of experiments. At the same time, the reverse analyses is performed to get which words have the most effects on the decision making. This method can be used in analyzing the writing style of some author.
出处 《计算机工程与应用》 CSCD 北大核心 2018年第1期186-190,共5页 Computer Engineering and Applications
关键词 机器学习 自然语言处理 宋词风格 machine learning Natural Language Processing(NLP) SonCi style
  • 相关文献

参考文献3

二级参考文献35

  • 1Aas K,Eikvil L. Text Categorisation: A Survey. June 1999.3
  • 2Yao Tiansun. Natural Language Understanding. Tsinghua University Press ,2002. 373
  • 3Han J,Kamber M. Data Mining: concepts and techniques. 2001
  • 4Mitchell T M. Machine Learning. McGraw-Hill Companies
  • 5Wen Cai. Extension Engineering Method. Science Press,2000.99
  • 6Marques de sa J P. Pattern Recognition:Concepts Methods and Applications. Springer-Verlag Berlin Heideberg New York,2002
  • 7Duba R O, Hart P E, Stork D G. Pattern Classification (Second Edition). John Wiley &Sons,Inc. ,2001
  • 8Yi Yong,He Zhongshi,Li Liangyan. Studies on Traditional Chinese Poetry Style Identification. In: the Proc. of ICMLC04. Shanghai, Aug. 2004. 2936~2939
  • 9唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:139
  • 10Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[-C]//Proceedings of the eleventh annual conference on computational, learning theory. ACM, 1998~ 92-100.

共引文献63

同被引文献46

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部