期刊文献+

南京地区斜向加热电离层效应数值模拟 被引量:1

Numerical Simulation of Oblique Ionospheric Heating Effects in Nanjing District
在线阅读 下载PDF
导出
摘要 与垂直加热相比,斜向加热电离层具有灵活性高、影响范围广和便于实际操作等优势.在非偏区考虑欧姆吸收,基于电子能量方程和连续性方程构建电波斜向加热低电离层的物理模型,并利用IRI-2007和NRLMSISE-00经验模型提供的背景参数对南京地区斜向加热低电离层进行数值模拟,对比不同加热条件下电子温度和电子密度的扰动情况.研究结果表明:电波加热效果随入射仰角和有效辐射功率的增大而增大;电子温度和电子密度增幅随电波频率增大而减小;X波模比O波模造成的电子温度扰动幅度和电子密度扰动幅度更大,同时X波模比O波模能更快地使电子温度和电子密度达到稳定状态;一定范围内较小仰角、较低频率、较大有效辐射功率的电波能使电子密度更快达到稳定,后两者还能加快电子温度达到稳定的过程;电子温度达到稳定所需时间随入射电波仰角呈单峰变化,仰角为62°时达到最大. Compared with vertical heating, oblique ionospheric heating has advantages of higher flexibility, wider effect range and more practicable operability. In this paper, based on the energy conservation equation and continuity equation of electron, the physical model is built for lower ionosphere heated by oblique radio wave by considering Ohm absorption in the non-deviated section, and oblique heating in low ionosphere over Nanjing district is simulated using the background parameters obtained by IRI-2007 and NRLMSISE-00 models. The results show that heating effect increases when incident elevation angle and effective radiated power increase. The rising amplitude of electronic temperature and density decreases when the frequency of radio wave increases. The perturbation amplitudes of electron temperature and density caused by X mode are bigger than those caused by O mode, and X mode can make electron temperature and electron density reach a steady state more quickly than O mode. Within a certain range, the radio wave with smaller incident elevation angle, lower frequency and larger effective power can make electron density reach a steady state more quickly, and the latter two can also accelerate the process of electron temperature to reach stability.The time that electron temperature to reach stability varies singlet with elevation angle of incident electromagnetic wave, and will be a maximum as the elevation angle is 62°.
作者 郭哲 方涵先 赫英明 杨鼎 马杰 敬文琪 王世旗 GUO Zhe FANG Hanxian HE Yingming YANG Ding MA Jie JING Wenqi WANG Shiqi(Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 Meteorological Observatory, No.93279 Air Force, Dandong 118000 Xi'an Satellite Control Center, Xi'an 710043)
出处 《空间科学学报》 CSCD 北大核心 2017年第5期531-537,共7页 Chinese Journal of Space Science
基金 国家自然科学基金项目(40505005) 国家重点实验室专项基金项目共同资助
关键词 无线电波 低电离层 斜向加热 电子温度 电子密度 Radio waves Low ionosphere Oblique heating Electron temperature Electron density
  • 相关文献

参考文献6

二级参考文献82

  • 1黄文耿,古士芬,龚建村.大功率高频无线电波加热电离层[J].电波科学学报,2004,19(3):296-301. 被引量:34
  • 2魏寒颖,赵正予,倪彬彬.加热电离层生成不均匀体的理论及模拟研究[J].电波科学学报,2006,21(1):84-88. 被引量:3
  • 3刘立波,吴向阳,涂剑南,保宗悌.甚低频电磁波变态低电离层的数值模拟[J].空间科学学报,1997,17(2):130-135. 被引量:8
  • 4LAROUSSI M. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Transactions On Plasma Science, 1993, 21(4) : 366-372.
  • 5HU B J, WEI G, LAI S L. SMM analysis of reflection absorption and transmission from nonuniform magnetized plasma slab[J]. IEEE Transactions On Plasma Science, 1999, 27(4): 1131-1136.
  • 6CCIR. CCIR Interim Method for Estimating Skywave Field Strength and Transmission Loss at Frequencies Between the Approximate Limits of 2 and 30 MHz [R]. Report 252-2, in Recommendations and Reports of the CCIR:Propagation in Ionized Media, Vol. VI, New Delhi Plenary, ITU, Geneva, 1970.
  • 7BILITZA D. International reference ionosphere 2000 [J]. Radio Science, 2001, 36(2):261-275.
  • 8HEALD M A and WHARTON C B. Plasma Diagnostics with Microwaves[M]. New York: Krieger, 1978.
  • 9BANKS P M and KOCHARTS G. Aeronomy, Parts A and B[M]. New York: Academic Press, 1973.
  • 10SCHUNK R W and WALKER J C. Theoretical ion densities in the lower ionosphere[J]. Planetary and Space Science, 1973, 21(11): 1875-1896. doi: 10. 1016/0032-0633(73)90118-9.

共引文献43

同被引文献34

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部