期刊文献+

一种基于鲁棒局部纹理特征的背景差分方法 被引量:2

A background subtraction method based on robust local texture features
在线阅读 下载PDF
导出
摘要 针对复杂场景下运动目标的精确检测这一问题,提出一种对噪声鲁棒并具备灰度尺度不变性的局部纹理特征描述子LBP_Center,将其与像素的颜色信息结合应用于背景建模中,采用随机抽样的机制更新模型,同时引入背景复杂度以去除多模态动态背景产生的噪点。在标准测试数据集上的实验结果表明,该算法对柔性阴影及光照缓慢变化具备良好的鲁棒性,综合性能更优。 Focusing on the precise detection of moving objects, we propose a new local texture descriptor--LBP_Center, which is robust to noise and invariant to gray scale. And together with the color information of pixels we apply it to the background model. Then we update the model by random sampiing and introduce background complexity to remove the noise of the multimode dynamic background. Experimental results on standard testing datasets indicate that the new method has good robustness to soft project shadows and slow illumination change, and better comprehensive performance in comparison with other algorithms.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第8期1513-1519,共7页 Computer Engineering & Science
基金 国家自然科学基金(61162016 61562057) 甘肃省科技支撑计划(1104FKCA102 1104GKCA057) 甘肃省青年科技基金(148RJYA011) 兰州交通大学校青年基金(2015003) 兰州市人才创新创业科技计划(2014-RC-7)
关键词 运动目标检测 背景差分 局部纹理特征 柔性投射阴影 detection of moving objects background subtraction local texture feature soft projected shadows
  • 相关文献

参考文献1

二级参考文献117

  • 1Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585.
  • 2Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204.
  • 3Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.
  • 4Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420.
  • 5Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323.
  • 6Ojala T, Pietikinen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 7Li S Z, Jain A K. Handbook of Face Recognition [ M]. Berlin, Germany: Springer-Verlag, 2004.
  • 8Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037-2041.
  • 9Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classifi- cation using feature distributions [ J ]. Pattern Recognition, 2000, 33(1) : 43-52.
  • 10Gong P, Marcean D J, Howarth P J. A comparison of spatial fea- ture extraction algorithms for land-use classification with SPOT HRV data [ J ]. Remote Sensing of Environment, 1992, 40 : 137-151.

共引文献59

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部