摘要
针对复杂场景下运动目标的精确检测这一问题,提出一种对噪声鲁棒并具备灰度尺度不变性的局部纹理特征描述子LBP_Center,将其与像素的颜色信息结合应用于背景建模中,采用随机抽样的机制更新模型,同时引入背景复杂度以去除多模态动态背景产生的噪点。在标准测试数据集上的实验结果表明,该算法对柔性阴影及光照缓慢变化具备良好的鲁棒性,综合性能更优。
Focusing on the precise detection of moving objects, we propose a new local texture descriptor--LBP_Center, which is robust to noise and invariant to gray scale. And together with the color information of pixels we apply it to the background model. Then we update the model by random sampiing and introduce background complexity to remove the noise of the multimode dynamic background. Experimental results on standard testing datasets indicate that the new method has good robustness to soft project shadows and slow illumination change, and better comprehensive performance in comparison with other algorithms.
出处
《计算机工程与科学》
CSCD
北大核心
2017年第8期1513-1519,共7页
Computer Engineering & Science
基金
国家自然科学基金(61162016
61562057)
甘肃省科技支撑计划(1104FKCA102
1104GKCA057)
甘肃省青年科技基金(148RJYA011)
兰州交通大学校青年基金(2015003)
兰州市人才创新创业科技计划(2014-RC-7)
关键词
运动目标检测
背景差分
局部纹理特征
柔性投射阴影
detection of moving objects
background subtraction
local texture feature
soft projected shadows