期刊文献+

利用DAISY和概率松弛的近景影像密集匹配

Dense Matching for Close Range Image Based on DAISY and Probabilistic Relaxation
在线阅读 下载PDF
导出
摘要 针对近景影像存在的弱纹理、遮挡问题,提出一种基于改进的DAISY描述子和概率松弛的近景影像密集匹配方法。首先,利用SURF提取种子点构建初始视差图,根据影像核线方向改进DAISY描述子的主方向,以影像核线方向的反方向对特征描述子进行掩膜处理,进而对兴趣点进行特征描述。随后,通过松弛迭代的候选点筛选策略渐进地获取正确率占优的特征匹配点。实验表明,相对于传统概率松弛匹配算法,该算法克服了近景影像中弱纹理及遮挡问题导致的误匹配,匹配点数目提高了2倍左右,具有较高的匹配点密集程度和可靠性。 For the problem of weak texture and shade in the close range image,a new dense matching algorithm based on improved DAISY descriptor and probability relaxation is proposed.First of all,the initial parallax figure was built by the seed point extracted using SURF algorithm,the main direction of DAISY descriptor was improved by the image of epipolar direction,and the feature descriptor was masked by image epipolar direction in the opposite direction,in order to obtain the character description point of interest.Then through the relaxation iteration of candidate screening strategy to gradually get dominant characteristics of the correct matching points.Experimental results show that compared with traditional probabilistic relaxation matching algorithm,this algorithm overcomes the weakness in overcoming the blurring image texture and the shade problem caused by false matching,where,the matching point number increases 2times,which has a high degree of dense matching point.
出处 《遥感信息》 CSCD 北大核心 2017年第3期123-127,共5页 Remote Sensing Information
关键词 密集匹配 概率松弛 DAISY 核线倾斜角 候选点筛选策略 dense matching probabilistic relaxation DAISY descriptor epipolar tilt angle candidate point selection strategy
  • 相关文献

参考文献7

二级参考文献87

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3梁栋,童强,屈磊,王年,韦穗.一种基于极几何和单应约束的图像匹配算法[J].系统仿真学报,2006,18(1):44-46. 被引量:21
  • 4李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 5Harris C, Stephens M J. A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference. Mancherster, UK: Springer, 1988. 147-151.
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Matas J, Chum O, Martin U, Pajdla T. Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference. London, UK: Springer, 2002. 384-393.
  • 8Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(1): 63-86.
  • 9Scharstein D, Szeliskl R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1-3): 7-42.
  • 10Seitz S M, Dyer C R. Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 1999, 35(2): 151-173.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部