期刊文献+

基于Hadoop农业大数据管理平台的设计 被引量:12

Design of the Management Platform for Agriculture Big Data Based on Hadoop
在线阅读 下载PDF
导出
摘要 信息技术的高速发展使得每天的数据量以TB级速度暴增,如何有效利用和管理这些爆炸式增长的大数据呢?是当前亟待处理的问题.大数据已经渗透到包括农业领域在内的各个领域,随着农业信息化建设以及物联网技术在农业生产中的应用,产生了海量的农业大数据待存储、管理和处理.本文以成都农业科技职业学院彭州葛仙山农业示范基地的农业信息化建设为背景,根据农业物联网和信息化建设要求,构建高性能基于Hadoop农业大数据管理的平台,实现农业大数据的安全可靠存储、智能管理与应用,最终达到对农业生产的智能预警、智能决策和智能分析的目的,并为农户提供专业的指导.为我国进入精细化种植、精准化控制、可视化管理、智能化决策的智慧农业时代奠定基础. The rapid development of modem information technology makes the amount of every day data increase at the speed of TB, how to effectively use and manage the big data with explosive growth? It is a problem need to be solved urgently. Big data has penetrated into various fields including agriculture, with the agricultural informatization construction and the application of Intemet technology in agricultural production, resulting in a large amount of agricultural data to be stored, managed and processed. Based on the background of the construction of agricultural informatization in Pengzhou Gexian mountain agricultural demonstration base of Chengdu agricultural science and technology vocational college, according to the demand of informatization construction of agriculture, we build high performance agricultural big data management platform based on Hadoop, realizing the agricultural big data safe and reliable storage, intelligent management and application. And ultimately we achieve the purpose of early intelligent waming of agricultural production, intelligent decision-making and intelligent analysis, providing professional guidance to farmers. This lays the foundation for China to enter the intelligent agricultural era based on fine planting, precise control, visual management and intelligent decision-making.
作者 文燕
出处 《计算机系统应用》 2017年第5期74-79,共6页 Computer Systems & Applications
基金 四川省教育厅2016年四川省高校人文社科学重点研究基地科研项目(TCCSJY-2016-C16) 成都农业科技职业学院科研项目(成农院[2016]1-24)
关键词 农业大数据 HADOOP MAP/REDUCE HDFS 智慧农业 agriculture big data Hadoop Map/Reduce HDFS wisdom agriculture
  • 相关文献

参考文献4

二级参考文献56

  • 1卢丽娜.国外农业信息化发展现状及特点[J].中国农村小康科技,2007(4):23-26. 被引量:51
  • 2第32次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/,2013-06-07.
  • 3Shengmei Luo, Zhikun Wang, Zhiping Wang. Big -Data Analytics: Challenges, Key Technologies and Prospects [ J]. Cloud Computing and IT Institute of ZTE Corporation, 2013.
  • 4TrumanLei.BigDataProducetheNewProductivity[C]//第三届国际物联网大会论文集,2013.
  • 5Gerhard R. Joubert. Modeling & Big Datal[ C]. Technical University Clausthal, Germany, 2013.
  • 6乇辰越.大数据:未来的新石油[EB/OL].http://www.ceweekly.cn/html/Article/20130422669528000829.html,2013-04-22.
  • 7张意轩,于洋.大数据时代的大媒体[N/OL].人民日报,http://cpc.people.corn.cn/n/2013/0117/c83083-20231637-3.html.2013-01-17.
  • 8Community cleverness required [ J ]. Nature, 2008, 455 (7209) : 1.
  • 9Manyika J, Chui M, Brown B, et al: Big data: the next frontier for innovation, competition, and productivity [ EB/OL]. http ://www.mckinsey. tom/insights/business technology/big_data_the_next_frontier for innovation, 2011.
  • 10IBM-全球企业咨询服务部.分析:大数据在现实世界中的应用[R/OL].http://www-935.ibm.com/services/muhimedia/use--of_big-.data.pdf,2012.

共引文献414

同被引文献161

引证文献12

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部