摘要
多输出高原函数在密码学中具有重要作用。给出它的一个子类,即严格多输出高原函数的定义,则完全非线性函数以及几乎Bent函数均为严格多输出高原函数,在密码学中有很好的应用。基于Walsh-Hadamard码,构造具有最大码字重量R_k的(n,k)线性等重码,证明R_k≥R_(k+1),并给出了R_k=R_(k+1)的充分必要条件。此外,基于线性等重码,构造二次严格多输出高原函数,同时计算这些严格多输出高原函数的非线性度。
Multi-output plateaued functions play an important role in cryptography.The strict multi-output plateaued functions, as are a subclass of multi-output plateaued functions is defined. Both perfect nonlinear function and almost Bent function are strict multi-output plateaued functions .These functions are well applied to cryptography. Based on Walsh-Hadamard code,linear (n,k) constant weight code with maximum code weight Rk is constructed.h is also proved that Rk is greater than or equal to Rk+1.The sufficient and necessary condition Of Rk equating Rk+1 is given.Based on linear constant weight codes, strict multi-output plateaued functions with algebraic degree 2 are constructed.The nonlinearity of these strict multi-output plateaued functions is also computed.
作者
谯通旭
邓雷升
赵中军
王坚
孙瑞
QIAO Tong-xu DENG Lei-sheng ZHAO Zhong-jun WANG Jian SUN Rui(No.30 Institute of China Electronics Technology Group Corporation, Chengdu Sichuan 610041, China)
出处
《通信技术》
2017年第4期771-774,共4页
Communications Technology
基金
国家自然科学基金(No.61309034)~~