摘要
针对Banach空间中一类非线性脉冲微分方程,获得了该类问题稳定及渐近稳定的条件.将隐式Euler法用于求解上述问题,得到了方法的稳定性条件.
A class of nonlinear impulsive differential equations are considered in Banach spaces.The stability and asymptotic stability conditions of the analytic solutions of the problems are derived.The implicit Euler method is adapted for solving the above mentioned problems,the numerical stability results of the method are also obtained.
出处
《湘潭大学自然科学学报》
CAS
北大核心
2017年第1期1-4,共4页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金项目(11571291
11371302)
湖南省教育厅重点项目(15A184)
关键词
脉冲微分方程
隐式EULER法
稳定性
渐近稳定性
impulsive differential equations
implicit Euler method
stability
asymptotic stability