期刊文献+

一种新型的混合式的中国环县短期风速预测 被引量:1

A Novel Hybrid Approach for Wind Speed Prediction in Huan Region of China
在线阅读 下载PDF
导出
摘要 风能是一种清洁、无污染的可再生能源,由于气象参数的混沌和内在复杂性,使得风速的预测是一个非常困难的问题.基于对实际风速数据集,使用季节性指数调整消除季节性因子和反向传播(BP)神经网络,给出一种新的风速预测方法.数值结果表明,该方法能有效地提高风速预测的准确性. Wind power is a clean and non-polluting renewable energy source. However,due to the chaotic and intrinsic complexity of weather parameters,the prediction of wind speed is a very difficult problem. In this paper,we propose a new hybrid wind speed forecasting method based on a back-propagation( BP) neural network and the idea of eliminating seasonal effects from actual wind speed datasets using seasonal exponential adjustment. The numerical results indicate that the proposed method is effective in improving the accuracy of wind speed predictions.
作者 付桐林
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第2期272-276,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(71471148) 甘肃省高等学校科研项目(2015A-150) 博士科研启动基金项目(xyby05)
关键词 BP神经网络 J-T检验 风速预测 绝对平均误差 BP neural network J-T test wind speed prediction mean absolute percentage error
  • 相关文献

参考文献2

二级参考文献28

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:187
  • 2周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166.
  • 3冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,21(3):19-22. 被引量:133
  • 4FAN S, LIAO J R, YOKYAMA R, et al. Forecasting the wind generation using a two-stage network based on meteorological information [J]. IEEE Transactions on Energy Conversion, 2009, 24 (2) : 474 - 482.
  • 5KUSIAK A, ZHANG Z J. Adaptive control of a wind turbine with data mining and swarm intelligence [J]. IENN ansac- tions on Sustainable Energy, 2011, 2(1):28- 36.
  • 6COPPIN P, KATZFEY J. The feasibility of wind power production forecasting in the Australian context[R]. Aspendale, Australia: CSIRO Atmospheric Research Centre, 2003.
  • 7POURMOUSAVI KANI S A, AREDHALI M M. Very short-term wind speed prediction: A new artificial neu- ral network-Markov chain model [J]. Energy Conversion and Management, 2011, 52(1) .-738 - 745.
  • 8WANG C, YAN W J. Short-term wind speed predic- tion of wind farms based on improved particle swarm optimization algorithm and neural network [C]// Inter- national conference on Mechanic Automation and control engineering. Wuhan: [s.n ], 2010:5186 - 5190.
  • 9DAMOUSIS I G, ALEXIADIS M C, THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correla- tion [J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.
  • 10Abdelgadir A A, Sucharita G, James R I, et al. Classification of a SARS data using a neural network[J]. Remote Sensing of Environment,1996,57:79-87.

共引文献196

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部