期刊文献+

一种可用于入侵防范的步态识别方法研究 被引量:2

RESEARCH ON A METHOD OF GAIT RECOGNITION FOR INTRUSION PREVENTION
在线阅读 下载PDF
导出
摘要 提出一种可用于入侵防范系统中的步态识别方法。该方法以足底压力信息为基础,采用卷积神经网络模型进行步态特征提取。首先,用压力测试板采集行人的足底压力信息并作相应的预处理;然后,结合K均值聚类和卷积神经网络方法的自学习特性得到足底压力信息的特征表示;最后,对所获得的特征表示进行分类识别。在典型数据集上的比较试验表明了该算法的有效性。 A gait recognition algorithm for intrusion prevention is presented. This method is based on plantar pressure information, adopting convolution neural network model to extract teature. Firstly, the preprocessmg oI me evaiuateu data collected from the test board of plantar pressure is performed. Secondly, the deep learning technique and k-means Clustering are used to automatically extract features from the plantar pressure distribution diagram. Finally, we use the features for the recognition task. The comparative experiments conducted on the typical datasets demonstrate the effectiveness of the proposed approach.
作者 杨春生 化晨冰 王鸣镝 黄振华 邵晓东 过其峰 Yang Chunsheng Hua Chenbing Wang Mingdi Huang Zhenhua Shao Xiaodong Guo Qifeng(Linyi Power Supply Company,Linyi 276003, Shandong, China Anhui Jiyuan Electric Network Technology Co. , Ltd of NARI, Hefei 230088 ,Anhui, China)
出处 《计算机应用与软件》 2017年第3期248-251,共4页 Computer Applications and Software
关键词 入侵防范 足底压力信息 卷积神经网络 特征学习 步态识别 Intrusion prevention Plantar pressure information Convolution neural network Feature extraction Gait recognition
  • 相关文献

参考文献3

二级参考文献65

  • 1史力民,董佳英,李泰山,吴雪冬.赤足残缺足迹检验初探[J].辽宁警专学报,2005,7(2):6-9. 被引量:8
  • 2王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:45
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献694

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部