期刊文献+

基于改进型分数阶微分的HIFU治疗区域增强方法

An Enhancement Method of Treatment Area by HIFU Based on the Improved Fractional-order Differential
在线阅读 下载PDF
导出
摘要 提出一种基于改进型的自适应分数阶微分的B超图像增强方法。该算法根据B超图像的特点,在分数阶微分定义的基础上对分数阶微分掩模算子分解的8个方向的模板进行改进,得到像素点周围8个方向的加权求和值,取其最大值作为增强后的像素值,再利用伪彩色变换算法进一步增强。与常用的灰度变换、均值滤波等B超图像增强方法相比较,结果表明:基于改进型的自适应分数阶微分能很好地突出图像的边缘和纹理,抑制较大噪声,结合伪彩色变换能较准确地从高强度聚焦超声(HIFU)辐照后的B超图像中检测出治疗区域,与切片实验所获取的治疗区域大小、形状更趋一致,能有效地帮助临床医生确定治疗区域的大小、形状及位置。 An enhancement method of B-mode ultrasonic image based on the improved adaptive fractional-order differential is presented.According to the characteristics of B-mode ultrasound images,the operator of fractional-order differential is divided into eight sub-templates with different directions around the detecting pixel,and then the eight weight sum values for the eight sub-templates are obtained.Then a maximum of eight directions is given to the original pixel.What's more,the pseudo color transform algorithm is used to strethen further.The result shows that the improved fractional-order differential can enhances the image edges and the texture details,and avoid loud noise more effectively,compared with commonly used gray level transformation,median filter and ultrasound image enhancement methods.Combined with pseudo color transformation,the algorithm can detect the treatment area precisely from B-mode ultrasound image after irradiating by HIFU,which is consistent with practical size and shape of the treatment areas obtained by slicing up the irradiated fresh pork.It can help clinicians to observe and identify the size,shape and position of the treatment area effectively.
出处 《计算机与数字工程》 2017年第1期127-130,180,共5页 Computer & Digital Engineering
基金 国家自然科学基金(编号:11174077 11474090) 晓庄学院博士基金(编号:130645)资助
关键词 高强度聚焦超声 B超图像 自适应分数阶微分 掩模算子 伪彩色变换 图像增强 high intensity focused ultrasound(HIFU) B-mode ultrasound images adaptive fractional-order differential mask operator pseudo color transformation image enhancement
  • 相关文献

参考文献10

二级参考文献120

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部