期刊文献+

基于改进完全子图模型的关注对象多社区发现研究

Concerned objects multi-community detection based on improved complete subgraph model
在线阅读 下载PDF
导出
摘要 为实现用户和关注对象的多社区划分,针对完全子图模型不能进行多类分类的缺陷,该文引入了阈值划分方法,提出基于改进完全子图模型的社区发现算法。实验表明:与经典数据挖掘算法K-medoids相比,该文算法具有更高的准确性。 A multi-community detection method based on improved complete subgraph model is proposed using threshold division for multi-community division of users and concerned objects, because complete subgraph model cannot divide users and concerned objects based on multi- classification. Experiment result shows that compared with classical data mining algorithm K-medoids, this method is more accurate.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第6期674-678,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61272367) 江苏省科技厅项目(BZ2010021) 江苏省研究生培养创新工程项目(20120515) 江苏省产学研前瞻性联合研究项目(BY2014037-08)
关键词 完全子图模型 关注对象 多类 阈值划分 数据挖掘算法 complete subgraph model concerned objects multi-classification threshold division data mining algorithm
  • 相关文献

参考文献5

二级参考文献120

  • 1燕飞,张铭,谭裕韦,唐建,邓志鸿.综合社会行动者兴趣和网络拓扑的社区发现方法.计算机研究与发展,2010,47:357—362.
  • 2Lira KH, Datta A. Following the follower: Detecting communities with common interests on Twitter. In: Proc. of the 23rd ACM Conf. on Hypertext and Social Media. New York: ACM Press, 2012. 317-318. [doi: 10.1145/2309996.2310052].
  • 3Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58 (7): 1019-1031. Idol: 10.1002/asi.20591 ].
  • 4Dourisboure Y, Geraci F, Pellegrini M. Extraction and classification of dense communities in the Web. In: Proc. of the 16th Int'l Conf. on World Wide Web. New York: ACM Press, 2007. 461-470. [doi: 10.1145/1242572.1242635].
  • 5Tang L, Wang X, Liu HF. Uncoverning groups via heterogeneous interaction analysis. In: Proc. of the Ninth IEEE Int'l Conf. on Data Mining. Miami: IEEE, 2009. 503-512. Idol: 10.1109/ICDM].
  • 6Asur S, Parthasarathy S, Ucar D. An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. on Knowledge Discovery from Data (TKDD), 2009,3(4):16. [doi: 10.1145/1281192.128129].
  • 7Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: Proc. of the 8th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2002.61-70. [doi: 10.1145/775047.775057].
  • 8Kaplan AM, Haenlein M. Two hearts in three-quarter time: How to waltz the social media/viral marketing dance. Business Horizons, 2011,54(3):253-263. [doi: 10.1016/j.bushor.2011.01.006].
  • 9Larsson AO, Moe H. Studying political microblogging: Twitter users in the 2010 Swedish election campaign. New Media & Society, 2012,14(5):729-747. [doi: 10.1177/1461444811422894].
  • 10Lim KH, Datta A. Finding twitter communities with common interests using following links of celebrities. In: Proc. of the 3rd lnt'l Workshop on Modeling Social Media. New York: ACM Press, 2012.25-32, [doi: 10.1145/2310057.2310064].

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部