期刊文献+

自然场景图像中的文字检测综述 被引量:12

Detecting text in natural scence images were reviewed
在线阅读 下载PDF
导出
摘要 近年来自然场景图像中的文字检测与识别越来越得到人们的关注,主要是因为图像中的文字检测与识别对于理解图片内容、建立图像索引具有重要的意义。本文针对图像文字检测与识别这一领域的核心的问题即文字检测与定位,首先通过介绍了图像中的文字检测的基本概念,然后通过介绍和对比各种图像文字检测的方法的优缺点,我们可以得出这样一个结论即结合深度学习方法和大数据来进行自然场景图像文字检测与识别已经成为一个趋势和热点,文章最后总结了该领域的挑战和最新的发展趋势。 In recent years, natural image scene text detection has attracted more and more attention. Scene text detection is of significant value for comprehending content of image and retrieving image. To detect and locate text in image is the key problem in image text recognition. First, the paper introduces the basic concept of scene text detection and recognition.Then the paper analyzes, compares, and contrast different methods. So we can learn about the advantages and disadvantages of different methods. Naturally, we can conclude that the combination of deep learning and big data has become a trend for researchers because of the obvious of big data. At the end of the paper, it summarizes the challenge and trend in natural image scene text detection and recognition.
作者 杨飞
出处 《电子设计工程》 2016年第24期165-168,共4页 Electronic Design Engineering
关键词 自然场景文字检测 文字识别 深度学习方法 scene text recognition natural scene text recognition deep learning
  • 相关文献

参考文献3

二级参考文献110

  • 1吴建军,张育林,陈启智.液体火箭发动机稳态故障仿真及分析[J].推进技术,1994,15(3):6-13. 被引量:15
  • 2MARTIN RA, SCHWABACHER MA, MATTHEWS BL.Data-driven anomaly detection performance for the AresI-X ground diagnostic prototype[R]. USA: NASA, 2010.
  • 3DAVID L I. Inductive monitoring system constructedfrom nominal system data and its use in real-time systemmonitoring, AIAA 2004-8062[R]. USA: AIAA, 2004.
  • 4IVERSON D L, MARTIN Rodney, SCHWABACHERMark, et al. General purpose data-driven system moni-toring for space operations[J]. Journal of Aerospace Com-puting, Information, and Communication, 2012, 9(2):26-44.
  • 5Tsai S S, Chen H, Chen D, Schroth G, Grzeszczuk R, Girod B. Mobile Yingying ZHU et al. Scene text detection and recognition: recent advances and future trends visual search on printed documents using text and low bit-rate features. In: Proceedings of the 18th IEEE International Conference on Image Processing. 2011, 2601-2604.
  • 6Barber D B, Redding J D, McLain T W, Beard R W, Taylor CN. Vision-based target geo-location using a fixed-wing miniature air vehi?cle. Journal of Intelligent and Robotic Systems, 2006, 47(4): 361-382.
  • 7Kisacanin B, Pavlovic V, Huang T S. Real-time vision for human?computer interaction. Springer Science and Business Media, 2005.
  • 8DeSouza G N, Kak A C. Vision for mobile robot navigation: a sur?vey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(2): 237-267.
  • 9Ham Y K, Kang M S, Chung H K, Park R H, Park G T. Recognition of raised characters for automatic classification of rubber tires. Optical Engineering. 1995, 34(1): 102-109.
  • 10Yao C, Zhang X, Bai X, Liu W, Tu Z. Rotation-invariant features for multi-oriented text detection in natural images. PloS one, 2013, 8(8): e70173.

共引文献34

同被引文献69

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部