期刊文献+

有界双重控制导弹微分对策制导律 被引量:4

Differential game guidance law for dual and bounded controlled missiles
原文传递
导出
摘要 针对有界控制导弹采用鸭舵或尾舵单一控制形式存在的劣势,基于双边优化微分对策理论,推导了一种有界双重控制导弹微分对策制导律。该制导律不仅将鸭舵与尾舵两组舵面的控制有效融合在一起,而且实现了有界控制命令最优的分配设计。分析了该微分对策制导律的对策空间,并从弹目机动性能比和控制系统时间常数比之间的关系,给出了鞍点解的存在条件。考虑非完全信息情形,完成了目标加速度滤波器和拦截性能衡量指标的设计。采用Monte Carlo法进行了制导性能的仿真验证,结果表明:所设计的有界双重控制导弹制导律与采用单一的鸭舵控制或尾舵控制的导弹相比不仅机动性要求较低,且具有较高的命中概率。 Due to disadvantages of single canard fin control or tail fin control for bounded-control interception missiles, a novel dual and bounded controlled differential game guidance law is presented based on two-sided optimization differential game theory. This guidance law realizes fusion of these two fin controls and optimal distribution of control commands. The differential game space of this guidance law is analyzed and the existence conditions of saddle point solution are studied from the relationships between maneuvering perform- ance ratio and time constant ratio of the two-sided control systems. With the consideration of imperfect infor- mation scenario, a filter for target accelerations and a performance index for target interception are presented. Based on Monte Carlo method, simulations are carried out and the results show that this dual and bounded controlled guidance law has higher single shot kill probability and lower maneuvering performance requirements compared with the single-controlled scenario.
作者 花文华 孟庆龄 张金鹏 张拥军 HUA Wenhua MENG Qingling ZHANG Jinpeng ZHANG Yongjun(China Airborne Missile Academy, Luoyang 471009, China Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons, Luoyang 471009, China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第9期1851-1856,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金(2015ZC12006)~~
关键词 末制导律 微分对策 双重控制 鸭舵控制 目标拦截 terminal guidance law differential game dual control canard fin control target interception
  • 相关文献

参考文献3

二级参考文献32

  • 1Hull D G, Mack R E. Prediction of time-to-go for a homing missile using bang-bang control[C]. Proc of the AIAA Guidance, Navigation and Control Conf. Minneapolis MN: AIAA Press, 1988: 116-121.
  • 2Baba Y, Takehira T, Takano H. New guidance law for a missile with varying velocity[C]. Proc of the AIAA Guidance, Navigation, and Control Conf. Washington DC: AIAA Press, 1994: 207-215.
  • 3Cho H, Ryoo C K, Tahk M J. Closed-form optimal guidance law for missiles of time-varying velocity[J]. J of Guidance, Control, and Dynamics, 1996, 19(5): 1017- 1022.
  • 4Shima T, Shinar J. Time-varying linear pursuit-evasion game models with bounded controls[J]. J of Guidance, Control, and Dynamics, 2002, 25(3): 425-432.
  • 5Anderson G M. Comparison of optimal control and differential game Intercept guidance laws[J]. J of Guidance and Control, 1981, 4(2): 109-115.
  • 6Shinar J, Shima T, Kebke A. On the validity of linearized analysis in the interception of reentry vehicles[C]. Proc of the AIAA Guidance, Navigation, and Control Conf. Reston VA: AIAA Press, 1998: 1050-1060.
  • 7Shinar J, Steinberg D. Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model [J]. J of Aircraft, 1977, 14(8): 795-802.
  • 8Anderson G M. Comparison of optimal control and differ- ential game intercept guidance laws. Journal of Guidance and Control, and Dynamics, 1981, 4(2) : 09-115.
  • 9Perelman A, Shima T, Rusnak I. Cooperative differential games strategies for active aircraft protection from a hom- ing missile. Journal of Guidance and Control, and Dy- namics, 2011, 34(3) :761-773.
  • 10Bryson Jr A E, Ho Y C. Applied Optimal Control: Opti- mization, Estimation, and Control. Waltham, MA : Blaisdell, 1969. 148-176.

共引文献16

同被引文献27

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部