期刊文献+

碳纳米管的氧化还原控制及其电化学检测多巴胺 被引量:3

Oxidative modification of multi-wall carbon nanotubes for the electrochemical detection of dopamine
在线阅读 下载PDF
导出
摘要 利用湿化学法制备出化程度不同的多壁碳纳米管,并采用红外光谱仪、X-射线光电子能谱仪、透射电子显微镜分析样品因氧化程度不同而引起的表面特征差异。通过循环伏安法和示差脉冲伏安法研究多巴胺,尿酸和抗坏血酸在氧化程度不同的碳纳米管修饰玻碳电极上的电化学行为。其中,样品MWNCTs-R修饰的玻碳电极与其它样品相比,不仅展现出对多巴胺,尿酸和抗坏血酸更好的电催化性能,而且解决了氧化峰相互重叠的问题,可以用于在尿酸和抗坏血酸共存的条件下检测多巴胺。同时,传感器的响应电流随着多巴胺含量的增加而线性增大,线性范围为2~100μM。结果表明,不同氧化程度导致碳纳米管表面的组成和形貌不同,表面含有羧基,并保持完整石墨层结构的碳纳米管对多巴胺有更好的电催化响应。 Multi-wall carbon nanotubes(MWCNTs) with different degrees of oxidation were prepared by a wet chemical oxidation method.Their morphology and chemical composition were characterized by infrared spectroscopy,X-ray photoelectron spectroscopy and transmission electron microscopy.The oxidized MWCNTs were coated on glassy carbon for use as electrodes and their electrocatalytic oxidation activities for dopamine,ascorbic acid and uric acid were investigated by cyclic voltammetry and differential pulse voltammetry in order to evaluate their performance for selective dopamine detection.Results indicated that the electrocatalytic oxidation activities are dependent on both the electron transfer resistance of the graphitic layers and the electrostatic attraction between dopamine and carboxyl groups on the MWCNTs.Optimized MWCNTs with an appropriate content of carboxyl groups and nearly complete graphitic layers have a wide linear response current range for dopamine contents from 2 to 100 μM,and can be used for the selective detection of dopamine in the presence of ascorbic acid and uric acid.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2016年第5期485-491,共7页 New Carbon Materials
基金 煤转化国家重点实验室自主课题(2014BWZ006)~~
关键词 多壁碳纳米管 多巴胺 脉冲伏安法 电催化 Multi-walled carbon nanotubes Dopamine Pulse voltammetry Electrocatalysis
  • 相关文献

参考文献26

  • 1Li Y Y, Du J, Yang J D, et al. Electrocatalytic detection of do- pamine in the presence of ascorbic acid and uric acid using single- wailed carbon nanotubes modified electrode [ J ]. Colloids and Surfaces B: Biointerfaces, 2012, 97: 32-36.
  • 2Wightman R M, May L J, Michael A C. Detection of dopamine dynamics in the brain [ J]. Analytical Chemistry, 1988, 60 (13) : 765-710.
  • 3Dursun Z, Gelmez B. Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multi- wall carbon nanotubes modified GCE [ J ]. Electroanalysis, 2010, 22 (10): 1106-1114.
  • 4Moraes F C, Cabrai M F, Machado S A S, et ai. Electrocataiyt- ic behavior of glassy carbon electrodes modified with multiwailed carbon nanotubes and cobalt phthalocyanine for selective analysis of dopamine in presence of ascorbic acid [ J ]. Electroanaiysis, 2008, 20 ( 8 ) : 851-857.
  • 5Jiao S F, Li M G, Wang C, et al. Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive deter- mination of dopamine in the presence of AA and UA[ J]. Elec- trochimica Acta, 2007, 52: 5939-5944.
  • 6Li Y H, Liu X S, Zeng X D, et al. Selective and sensitive de- tection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode [ J ]. Electrochimica Ac- ta, 2011, 56: 2730-2734.
  • 7Zhu H R, Wu W, Zhang H, et al. Highly selective and sensitive detection of dopamine in the presence of excessive ascorbic acidusing electrodes modified with C60-functionalized multiwalled carbon nanotube films J 3. Electroanalysis, 2009, 21 ( 24 ) : 2660-2666.
  • 8Wu W C, Chang H W, Tsai Y C. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes[ J ]. Chemical Communication, 2011, 47: 6458-6460.
  • 9Wang Y, Li Y M, Tang L H, et al. Application of graphene- modified electrode for selective detection of dopamine[J]. Elec- trochemistry Communications, 2009, 11 : 889-892.
  • 10Iijima S. Helical microtubules of graphitic carbon[ J ]. Nature, 1991, 354: 56-58.

二级参考文献69

  • 1黄辉,王泽山,黄亨建,李金山.新型含能材料的研究进展[J].火炸药学报,2005,28(4):9-13. 被引量:84
  • 2周龙梅,侯立权,刘宏英,李凤生.Y_2O_3/纳米碳管复合粒子的结构及其对高氯酸铵热分解性能的研究[J].化学学报,2006,64(15):1548-1552. 被引量:9
  • 3Sayago I, Terrado E, Lafuente E, et al. Hydrogen sensors based on carbon nanotubes thin films[J]. Synth Met, 2005, 148: 15- 19.
  • 4Zhao Q, Frogley M D, Wagner H D. Direction sensitive stress measurements with carbon nanotube sensors [J].Polym Adv Technol, 2002, 13: 759-764.
  • 5Somani P R, Somani S P, Flahaut E, et al. Improving the photovoltaic response of a poly ( 3-octylthiophene )/n-Si heterojnnction by incorporating double-walled carbon nanotubes[J]. Nanotechnology, 2007, 18 : 185708-1-185708-5.
  • 6Frackowiak E, Jurewicz E, Delpeux S, et al. Nanotubular materials for supercapacitors [J].J Power Sources, 2001, 97-98 : 822-825.
  • 7Ma R Z, Liang J, Wei B Q, et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes[J].J Power Sources, 1999, 84: 126-131.
  • 8Emmenegger C, Mauron P, Sudan P, et al. Investigation of electrochemical double-layer capacitors electrodes based on carbon nanotubes and activated carbon materials[J]. J Power Sources, 2003, 124:321-329.
  • 9Seo M K, Park S J. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors [J]. Mater Sci Eng B, 2009, 164: 106-111.
  • 10Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[ J]. Carbon, 2005, 43 : 2677-2684.

共引文献31

同被引文献37

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部