期刊文献+

融合注视点预测和流形学习的显著性目标分割 被引量:1

Merging fixation prediction and manifold learning for salient object segmentation
原文传递
导出
摘要 针对现有显著性分割算法在图像背景复杂时先验知识不够健壮的问题,提出一种融合注视点预测和流形学习的显著性目标分割算法,能有效地对复杂场景中的显著性目标进行分割.该算法通过引入注视点先验知识和提取超像素分割图,预测并粗分割场景中的显著性目标;为了进一步提高显著性分割的性能,利用色彩模型(CIE-Lab)空间的颜色对比度表示超像素的特征;通过基于流形学习的方法对粗分割区域进行显著性优化,提高了分割精度.实验结果表明:在处理复杂图像集过程中,相比其他分割算法,该算法性能提高了21.8%,并且在不同环境下的显著性目标分割的鲁棒性更好. As the priors of existing saliency segmentation methods are not robust enough in the complex background, an algorithm which merged fixation prediction and manifold learning was proposed to effectively segment salient objects in complex scenes. The algorithm predicted and segmented salient objects in scenes by introducing the prior of fixation and extracting the map of superpixels. To further improve the performance of saliency segmentation, the algorithm leveraged color contrast be- tween superpixels as features in CIE-Lab (color model) space and resolved the saliency optimization of coarse regions via a manifold learning-based method which improved the segmentation accuracy. Experimental results show that the proposed method has an improvement of 21.8%o than the other best methods on complex datasets and is more robust to segment salient objects in different environments.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第10期64-69,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(71301057) 上海航天科技创新基金资助项目(SAST201409)
关键词 显著性目标分割 注视点预测 流形学习 色彩模型 超像素分割 salient object segmentation fixation prediction manifold learning CIE-Lab superpixel segmentation
  • 相关文献

参考文献2

二级参考文献35

  • 1Courty N,Marchand E.Visual perception based on salient features[C]∥International Conference on Intelligent Robots and Systems.Las Vegas:IEEE,2003:1024-1029.
  • 2Chen Qian,Yang Xiaokang,Song Li,et al.Robust video region-of-interest coding based on leaky prediction[J].IEEE Transactions on Circuits and Systems for Video Technology,2009,19(9):1389-1394.
  • 3Achanta R,Estrada E,Wils P,et al.Salient region detection and segmentation[C]∥International Conference in Computer Vision Systems.Santorini:Springer,2008:66-75.
  • 4Lu Taoran,Yuan Zheng,Huang Yu,et al.Video retargeting with nonlinear spatial-temporal saliency fusion[C]∥International Conference on Image Processing.Hong Kong:IEEE,2010:1801-1804.
  • 5Xu Linfeng,Li Hongliang,Zeng Liaoyuan,et al.Saliency detection using joint spatial-color constraint and multi-scale segmentation[J].Journal of Visual Communication and Image Representation,2013,24(4):465-476.
  • 6Imamoglu N,Lin Weisi,Fang Yuming.A saliency detection model using low-level features based on wavelet transform[J].IEEE Transactions on Multimedia,2013,15(1):96-105.
  • 7Chen Yuemeng,Bajic I V.A joint approach to global motion estimation and motion segmentation from a coarsely sampled motion vector field[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,21(9):1316-1328.
  • 8Xie Rong,Yu Songyu.Region-of-interest-based video transcoding from MPEG-2to H.264in the compressed domain[J].Optical Engineering,2008,47(9):097001.
  • 9Khan J I,Guo Zhong.Fast perceptual region tracking with coding-depth sensitive access for stream transcoding[J].Journal of Visual Communication and Image Representation,2008,19(6):355-371.
  • 10Su Yeping,Sun Mingting,Hsu V.Global motion estimation from coarsely sampled motion vector field and the applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(2):232-242.

共引文献5

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部