期刊文献+

基于压缩感知的MIMO OFDM系统稀疏信道估计

Compressed Sensing based Sparse Channel Estimation in MIMO OFDM Systems
在线阅读 下载PDF
导出
摘要 针对MIMO OFDM系统中时间、频域双选择性衰落信道的估计问题,分析了信道在时延、多普勒域的稀疏特性,提出了一种基于压缩感知的稀疏信道估计方法。通过修改OMP重构算法的迭代终止条件,得到了一种稀疏度未知条件下的改进的OMP算法(简称为I-OMP算法)。与传统最小二乘法相比,改进的OMP算法可以在使用较少导频的条件下获得较好的信道估计性能;与OMP算法相比,在不需要已知时延-多普勒域稀疏度的条件下,改进的OMP算法能够获得复杂度较低、性能较好的信道估计性能。 To solve the channel estimation problem for time- and frequency-selective fading MIMO OFDM systems, the features of the channel in Delay and Doppler domain are analyzed. A new method of sparse channel estimation based on compressive sensing(CS) is proposed. The Improved OMP(I-OMP) algorithm works in channel of unknown sparse degrees by modifying the condition of termination in iteration in OMP recovery algorithm. Simulations have shown that the I-OMP estimation has much better performance with a few pilots than conventional least square estimation; and compared with Orthogonal Matching Pursuit(OMP) estimation, the I-OMP algorithm can obtain the same good performance steadily, whose complexity is lower, without knowing the sparse degrees of channel in Delay-Doppler domain.
作者 丁远晴 DING Yuan-qing(Department of Investigation, Sichuan Police College, Luzhou Sichuan 646000, Chin)
出处 《通信技术》 2016年第10期1287-1291,共5页 Communications Technology
关键词 正交频分复用 双选择性衰落 压缩感知 正交匹配追踪 信道估计 orthogonal frequency division muhiplexing(OFDM) double selective fading compressive sensing(CS) orthogonal matching pursuit(OMP) channel estimation
  • 相关文献

参考文献10

  • 1尤肖虎,潘志文,高西奇,曹淑敏,邬贺铨.5G移动通信发展趋势与若干关键技术[J].中国科学:信息科学,2014,44(5):551-563. 被引量:738
  • 2Raghavan V,Hariharan G,Sayeed A M.Capacity of Sparse Muhipath Channels in the Ultra-Wideband Regime[J].IEEE Journal of Selected Topics in Signal Processing,2007,1 (03):357-371.
  • 3Candes E J,Wakin M B.An Introduction to Compres- sive Sampling[J].IEEE Signal Processing Magazine,2008, 25(02):21-30.
  • 4Bajwa W U,Haupt J,Sayeed A M,et al.Compressed Channel Sensing:A New Approach to Estimating Sparse Multipath Channels[J].Proceedings of the IEEE,2010,98(06):1058- 1076.
  • 5何雪云,潘林,彭伟刚.压缩感知在稀疏信道估计中的应用[J].通信技术,2011,44(9):27-29. 被引量:7
  • 6Mostofi Y,Cox D C.ICI Mitigation for Pilot-aided OFDM Mobile Systerm[J].Wireless Communicalions,2005, 4(02):765-774.
  • 7E1 H S Y,Sezginer S.Fast Varying Channel Estimation in Downlink LTE Systems[J].Personal Indoor & Mobile Radio Communications IEEE International Symposium on,2010:608-613.
  • 8Donoho D L.Compressed Sensing[J].Information Theory, 2006,52(04):1289-1306.
  • 9Candes E J,Romberg J,Tao T.Robust Uncertainty Princi- ples:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].Information Theory,2006,52 (02):489-509.
  • 10Tropp J,Gilbert A C.Signal Recovery from Random Mea- surements via Orthogonal Matching Pursuit[J].Information Theory,2008,53(12):4655-4666.

二级参考文献85

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2BARANIUK R G. Compressive Sensing[EB/OL]. (2004-09- 14) [2011 -02-11].http://dsp. rice. edu/files/cs/baraniukcskcture 07. pdf.
  • 3TROPP J A, GILBERT A C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit[J]. IEEE Trans. Inf. Theory, 2007, 53(12): 4655-4666.
  • 4TONG L, SADLER B M, DONG M. Pilot-assisted Wireless Transmissions[J]. IEEE Signal Processing Magazine, 2004, 21(06):12-25.
  • 5PAREDES J L, ARCE G R, WANG Z. Ultra-Wideband Compressed Sensing: Channel Estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1(03):383-395.
  • 6METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 7Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 8Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 93GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 10Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.

共引文献743

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部