摘要
通过对组合电器、变压器等电力设备进行带电检测,可以有效发现设备内部缺陷引起的局部放电。由于GIS套管结构、材料与GIS本体有很大不同,用于GIS本体带电检测及定位的方法往往不完全适用于GIS套管。为实现通过带电检测发现套管内部绝缘性缺陷的目的,文中基于GIS套管特高频局放检测、缺陷模式识别、放电源定位以及解体检析等技术,分析某500 kV变电站220 kV设备区GIS出线套管内部悬浮放电缺陷,根据特高频信号脉冲序列相位分布谱图(phase resolved pulse sequence,PRPS图)、局部放电相位分布谱图(phase resolved partial discharge,PRPD图)特征对缺陷类型进行识别,阐述基于时间领先法、平面分法、三角定位法的放电源精确定位过程,并结合其他检测手段进行综合分析判断,最后通过解体检析查明套管内部放电的具体原因为导电杆法兰与套管法兰对接面涂胶过多,使其接触不良,产生悬浮电位进而导致悬浮放电。从而验证特高频局放检测缺陷识别的正确性和放电源定位的准确性,以及多种带电检测技术综合应用的有效性和互补性。
Through on-site testing on GIS, transformer and other electric equipment, the partial discharge(PD) caused by equipment internal defects can be detected. Because of the differences among the GIS bushing structure, material and GIS ontology, the methods which to detect and locate GIS ontology don't apply to GIS bushing. In order to find the bushing's internal insulation defects, this paper analyzes the suspended discharge defects in the GIS bushing of some 220 kV equipment in a 500 kV substation based on partial discharge detection with UHF method, defect pattern recognition, discharge position and dissolution test analysis. According to the figures of phase resolved pulse sequence(PRPS) and phase resolved partial discharge(PRPD), the defect types are recognized. The discharge positioning process is stated based on time leading method, point plane method and triangulation method and is judged combining with other testing means. In the end, this paper finds out the reason of bushing's internal discharge and the reason is too much glue between the pole flange junction and the bushing flange junction which leads to suspended discharge. Through the study, this paper validates the correctness of defect recognition, the accuracy of discharge position and the effectiveness and complementary of integrated application of various charged detection technologies.
出处
《高压电器》
CAS
CSCD
北大核心
2016年第9期55-60,共6页
High Voltage Apparatus
关键词
局部放电
组合电器
特高频检测
定位
解体
partial discharge
GIS
ultra high frequency detection
positioning
disintegration