期刊文献+

In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals 被引量:31

In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals
原文传递
导出
摘要 In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys. In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期909-918,共10页 材料科学技术(英文版)
基金 supported by the National Basic Research Program of China (973 Program) (Grant Nos. 2012CB619102 and 012CB619100) National Science Fund for Distinguished Young Scholars (Grant No. 51225101) National Natural Science Foundation of China (Grant Nos. 51431002 and 31170909) the NSFC/RGC Joint Research Scheme (Grant No. 51361165101) State Key Laboratory for Mechanical Behavior of Materials (Grant No. 20141615) Beijing Municipal Science and Technology Project (No. Z141100002814008)
关键词 Commercial Zn alloys Biodegradable metals Mechanical properties Corrosion behaviors Cytotoxicity Hemocompatibility Commercial Zn alloys Biodegradable metals Mechanical properties Corrosion behaviors Cytotoxicity Hemocompatibility
  • 相关文献

参考文献62

  • 1Y.E Zheng, X.N. Gu, E Witte, Mater. Sci. Eng. R Rep. 77 (2014) 1-34.
  • 2X.N. Gu, Y.E Zheng, Front China 4 (2010) 111-115.
  • 3E Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. WiUumeit, E Feyerabend, Curt. Opin. Solid State Mater. Sci. 12 (2008) 63-72.
  • 4M.E Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728-1734.
  • 5X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30 (2009) 484-498.
  • 6T. Kraus, S.E Fischerauer, A.C. H~nzi, P.J. Uggowitzer, J.E L6ffler, A.M. Weinberg, Acta Biomater, 8 (2012) 1230-1238.
  • 7P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar, J. Goldman, Emerg. Mater. Res. 1 (2012) 237-255.
  • 8H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Acta Biomater. 6 (2010) 1852-1860.
  • 9T.. Huang, J. Cheng, Y.E Zheng, Mater. Sci. Eng. C Mater. Biol. Appl. 35 (2014) 43-53.
  • 10W.J. Lin, D.Y. Zhang, G. Zhang, H.T. Sun, H.P. Qi, L.P. Chen, Z.Q. Liu, R.L. Gao, W. Zheng, Mater. Des. 91 (2016) 72-79.

同被引文献202

引证文献31

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部