期刊文献+

基于联合非负字典学习的遥感图像超分辨重建 被引量:1

Super-resolution Reconstruction of Remote Sensing Images Based on Joint Nonnegative Dictionary Learning
在线阅读 下载PDF
导出
摘要 针对图像的超分辨重建问题,提出一种基于联合非负字典学习的单幅图像超分辨重建算法,并将其用于遥感图像的超分辨重建。利用已有的高分辨图像,通过预处理得到高低分辨样本集。给出联合非负字典学习技术,并采用该技术对高低分辨样本集训练得到稀疏的高低分辨字典,使用高低分辨字典重建高分辨图像,并分析算法的计算复杂度。实验结果表明,与双三次插值法、联合字典训练算法、耦合字典训练算法相比,该算法在保证较好重建效果的同时需要较小的计算量。 Aiming at the super-resolution reconstruction of images, a super-resolution reconstruction algorithm for a single image based on joint nonnegative dictionary learning is proposed in this paper, and it is applied in the super- resolution reconstruction of remote sensing images. Using existing high-resolution images, high-resolution and low- resolution samples are obtained by preprocessing. Joint nonnegative dictionary training technology is proposed,and high- resolution dictionary and low-resolution dictionary are obtained by training high-resolution and low-resolution samples, respectively. Super-resolution remote sensing image is recovered by these dictionaries, and computation complexity is analyzed. Experimental results show that, compared with bicubic interpolation method, Joint Dictionary Training (JDT) algorithm and coupled dictionary training algorithm, the proposed algorithm requires lower computation cost to achieve better reconstruction effect.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第8期271-276,共6页 Computer Engineering
基金 安徽理工大学青年教师科学研究基金资助项目(QN201311) 安徽理工大学大学生创新创业训练计划基金资助项目(AH201410361178)
关键词 联合字典训练 稀疏表示 超分辨重建 遥感图像 计算复杂度 Joint Dictionary Training (JDT) sparse representation super-resolution reconstruction remote sensing image computation complexity
  • 相关文献

参考文献21

  • 1Keys R.Cubic Convolution Interpolation for Digital Image Processing[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1981,29(6):1153-1160.
  • 2Hsieh H,Andrews H.Cubic Splines for Image Interpolation and Digital Filtering[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1978,26(6):508-517.
  • 3Protter M,Elad M,Takeda H.Generalizing the Nonlocalmeans to Super-resolution Reconstruction[J].IEEE Transactions on Image Processing,2009,18(1):36-51.
  • 4Freedman G,Fattal R.Image and Video Upscaling from Local Self-examples[J].ACM Transactions on Graphics,2011,30(2):1-12.
  • 5Bruckstein A M,Donoho D L,Elad M.From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J].SIAM Review,2014,51(1):34-81.
  • 6Elad M.Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M].Berlin,Germany:Springer-Verlag,2010.
  • 7Freeman W T,Pasztor E C,Carmichael O T.Learning Low-level Vision[J].International Journal of Computer Vision,2010,40(1):25-47.
  • 8Chang Hong,Yeung D Y,Xiong Yiming.Super-resolution Through Neighbor Embedding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2010:275-282.
  • 9Yang Jiangchao,John W,Ma Yi.Image Super-resolution as Sparse Representation of Raw Image Patches[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.
  • 10Yang Jiangchao,John W,Thomas H.Image Superresolution via Sparse Representation[J].IEEE Transactions on Image Processing,2010,19(11):1-8.

二级参考文献31

  • 1Freeman W T, Jones T R, Pasztor E C. Example-based Super- resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 2Chang Hong, Yeung D Y, Xiong Yimin. Super-resolution Through Neighbor Embedding[C]//Proc. of CVPR’04. Washington D. C., USA: IEEE Computer Society, 2004.
  • 3Yang Jianchao, Wright J, Ma Yi, et al. Image Super-resolution as Sparse Representation of Raw Image Patches[C]//Proc. of Computer Vision and Pattern Recognition. [S. l.]: IEEE Computer Society, 2008.
  • 4Elad M. Sparse and Redundant Representations from Theory to Applications in Signal and Image Processing[M]. New York, USA: Springer, 2010.
  • 5Donoho D. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Candès E, Tao T. Near Optimal Signal Recovery from Ran- dom Projections: Universal Encoding Strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 7Zhang Lei, Lukac R, Wu Xiaolin, et al. PCA-based Spatially Adaptive Denoising of CFA Images for Single-sensor Digital Cameras[J]. IEEE Transactions on Image Processing, 2009, 18(4): 797-812.
  • 8Aharon M, Elad M, Bruckstein A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Represen- tation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 9Marquina A, Osher S J. Image Super-resolution by TV- regularization and Bregman Iteration[J]. Journal of Scientific Computing, 2008, 37(3): 367-382.
  • 10Dai Shengyang, Han Mei, Xu Wei, et al. Soft-cuts: A Soft Edge Smoothness Prior for Color Image Super-resolution[J]. IEEE Transactions on Image Processing, 2009, 18(5): 969- 981.

共引文献12

同被引文献8

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部