期刊文献+

基于核超限学习机的中文文本情感分类 被引量:2

Chinese text sentiment classification based on kernel extreme learning machines
在线阅读 下载PDF
导出
摘要 针对传统情感分类算法存在的参数学习困难及分类性能较低等问题,提出了一种基于核超限学习机的中文文本情感分类方法.首先通过信息增益对训练数据进行特征选择以降低输入维数,然后通过构建基于小波核超限学习机的分类器实现对中文文本的情感分类.实验结果表明,新方法参数学习容易,且其文本情感分类性能通常优于支持向量机和朴素贝叶斯. Aiming at the disadvantages of traditional classification algorithms for sentiment classification, such as complicated parameter learning and low classification performance, this paper proposed a novel Chinese text sentiment classification approach based on kernel extreme learning machines. First, the feature selection for training data via the information gain technology was implemented to reduce the input dimensionality. Then, a classifier based on the wavelet kernel extreme learning machine was constructed for Chinese text sentiment classification. The experimental results show that the model parameters of the proposed method are easier to learn and the Chinese text sentiment classification performance of the proposed method is usually superior to support vector machines or naive bayes.
出处 《中国计量学院学报》 2016年第2期228-233,共6页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.61272315 11391240180) 浙江省自然科学基金资助项目(No.LY14F020041 LY15A020003)
关键词 核超限学习机 情感分类 中文文本 kernel extreme learning machine sentiment classification Chinese texts
  • 相关文献

参考文献3

二级参考文献36

  • 1廖炳根,何灵敏,潘益民.基于动态集成的遥感图像分类[J].中国计量学院学报,2011,22(2):159-163. 被引量:2
  • 2刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 3Yang Y, Pedersen J O. A comparative study on feature selection in text categorization [C] //Proc of the 14th Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1997:412-420.
  • 4Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C] //Proc of the Conf on Empirical Methods in Natural Language Processing (EMNLP). Philadelphia, PA~ Association for Computaional Linguistics, 2002:79-86.
  • 5Wang Suge, Wei Yingjie, Li Deyu, et al. A hybrid method of feature selection for Chinese text sentiment classification[C] //Proc of the 4th Int Conf on Fuzzy Systems and Knowledge Discovery. Los Alamitos, CA: IEEE Computer Society, 2007:435-439.
  • 6Tan Songbo, Zhang Jin. An empirical study of sentiment analysis for Chinese documents [J]. Expert Systems with Application, 2008, 34(4):2622-2629.
  • 7Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association[J]. ACM Trans on Information Systems, 2003, 21 (4) : 315-346.
  • 8Komorowski J, Pawlak Z, Polkowski L, et al. Rough Sets: A Tutorial [M]. Rough Fuzzy Hybridization: A New Trend in Decision Making. Berlin: Springer, 1999:3-98.
  • 9Chouchoulas A, Shen Q. Rough set-aided keyword reduction for text categorization [J]. Applied Artificial Intelligence, 2001, 15(9): 843-873.
  • 10Bao Yongguang, Aoyama Satoshi, Yamada Kazutaka, et al. A rough set based hybrid method to text categorization [C] // Proc of WISE'01. Los Alamitos, CA: IEEE Computer Society, 2001:254-261.

共引文献215

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部