期刊文献+

基于协方差描述子稀疏表示的前视红外建筑物目标跟踪锁定 被引量:2

Forward-looking-infrared Building Object Tracking Based on Sparse Representation of Covariance Descriptor
在线阅读 下载PDF
导出
摘要 作为前视红外成像末制导的关键部分,红外目标跟踪是一个极具挑战性的课题。本文针对前视红外建筑物目标,提出了一种基于协方差描述子稀疏表示的红外目标跟踪框架。首先,提取红外建筑物目标的协方差描述子特征;其次,由于协方差描述子属于黎曼空间,采用log-Euclidean变换将其转换到欧式空间;最后,在粒子滤波的理论框架基础上,采用目标在字典中的稀疏表示作为观测模型,对红外建筑物目标进行表示,通过贝叶斯状态推理框架进行目标跟踪。对前视红外建筑物目标的跟踪实验表明,该方法在跟踪准确度及鲁棒性方面体现出了优良的特性。 As the key component of forward-looking-infrared(FLIR) image terminal guidance, infrared object tracking is a challenging task. In this paper, a FLIR building object tracking framework based on sparse representation of covariance descriptor(Cov) is proposed. First, the Cov of FLIR building is extracted and then transformed to Euclidean space due to the reason that Cov lies in Riemannian space. Then, based on particle filter theory, the observation model of object is represented through sparse representation of template dictionary, and object tracking is continued by using a Bayesian state inference framework. Experiments on FLIR building object show that the proposed method obtains effectiveness in tracking accuracy and robustness.
出处 《红外技术》 CSCD 北大核心 2016年第5期389-395,共7页 Infrared Technology
关键词 红外建筑物 目标跟踪锁定 稀疏表示 协方差描述子 仿射变换 infrared building, object tracking, sparse representation, covariance descriptor, affinetransformation
  • 相关文献

参考文献16

  • 1HUANG Qiao,YANG Jie.A multistage target tracker in IR image sequences[J].Infrared Physics&Technology,2014,68:122-128.
  • 2张学峰.复杂地物背景下红外弱小目标跟踪算法[J].红外技术,2015,37(8):659-663. 被引量:1
  • 3XUE Mei,LING Haibin.Robust visual tracking using L1minimization[C]//12th IEEE International Conference on Computer Vision,2009:1436-1443.
  • 4XUE Mei,LING Haibin.Robust visual tracking and vehicle classification via sparse representation[J]//IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,333(11):2259-2272.
  • 5BAO Chenglong,WU Yi,LING Haibin,et al.Real time robust L1tracker using accelerated proximal gradient approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2012:1830-1837.
  • 6唐峥远,赵佳佳,杨杰,刘尔琦,周越.基于稀疏表示模型的红外目标跟踪算法[J].红外与激光工程,2012,41(5):1389-1395. 被引量:16
  • 7PORIKLI Fatih,TUZEL Oncel,MEER Peter.Covariance tracking using model update based on lie algebra[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006,1:728-735.
  • 8ZHANG Xiaoqin,LI Wei,HU Weiming,et al.Block covariance based L1 tracker with a subtle template dictionary[J].Pattern Recognition,2013,46:175-1761.
  • 9WU Yi,LING Haibin,Blasch Erik,et al.Visual tracking based on log-Euclidean Riemannian sparse representation[C]//Proceedings of the Seventh International Symposium on Advances in Visual Computing,2011:738-747.
  • 10ZHANG Xiaoqin,LI Wei,HU Weiming,et al.Block covariance based L1 tracker with a subtle template dictionary[J].Pattern Recogntion,2013,46:1750-1761.

二级参考文献15

共引文献15

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部