期刊文献+

The Traveling Wave Reactor: Design and Development 被引量:2

行波堆:设计与开发
在线阅读 下载PDF
导出
摘要 The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits. 行波堆为一次通过式燃料循环反应堆,其利用堆芯自增殖大大降低了对浓缩和后处理的需求。自增殖将次临界换料燃料转化为新的临界燃料,从而使增殖燃烧波得以扩散。该理念建立在增殖燃烧波和燃料的相对移动的基础上。因此,燃料或增殖燃烧波相对于固定的观察器而言是移动的。行波堆最实用的体现就是能够在将核反应保持在同一位置的同时移动燃料——有时行波堆也被称为"驻波堆"。行波堆能够使用换料铀燃料运行,换料铀燃料包括完全贫化铀、天然铀和低浓缩铀燃料(即235U含量为5.5%或更低的燃料),这些燃料通常在快谱中达不到临界状态。轻水反应堆卸出的乏燃料也可以作为行波堆的换料燃料。上述情况均无需后处理即可实现极高的燃料利用率和燃料废物量的显著降低。当换料燃料为贫化铀时,行波堆的最大优势得以实现,即在启动后,无需浓缩设施,就可维持最先启动的反应堆和一连串后续的反应堆的运行。自2006年起,泰拉能源公司(Terra Power)与50多个机构高度协作,开展了概念设计、工程设计和相关技术开发活动,力争到2026年实现将第一个机组投入使用。本文总结了行波堆技术,包括它的发展计划及其进展,分析了行波堆的社会和经济效益。
机构地区 Terra Power LLC
出处 《Engineering》 SCIE EI 2016年第1期88-96,共9页 工程(英文)
关键词 NUCLEAR energyElectricity generationAdvanced reactorTraveling wave reactorSustainability 工程设计 反应器 行波 开发 技术活动 经济效益分析 乏燃料 移动相
  • 相关文献

参考文献20

  • 1Asafu-Adjaya J, Blomqvist L, Brand S, Brook B, DeFries R, Ellis E, et al. An ecomodernist manifesto [lnternet]. 20If[cited 2015 Oct 28]. Available from: http://www.ecomodernism.org/.
  • 2Hejzlar P, Petroski R, Cheatham J, Touran N, Cohen M, Truong B, et al. Terra- Power, LLC traveling wave reactor development program overview. Nucl Eng Technol 2013;45(6):731-44.
  • 3Chen SK, Petroski R, Todreas NE. Numerical implementation of the Cheng and Todreas correlation for wire wrapped bundle friction factors-desirable im- provements in the transition flow region. Nucl Eng Des 2013;263:406-10.
  • 4Mikityuk K. Heat transfer to liquid metal: review of data and correlations for tube bundles, Nucl Eng Des 2009;239(4):680-7.
  • 5Engel FC, Minushkin B, Atkins RJ, Markley RA. Characterization of heat trans- fer and temperature distributions in an electrically heated model of an LMF- BR blanket assembly. Nucl Eng Des 1980;62(1-3):335-47.
  • 6Miller SJ, Latta R. Fuel performance modeling of traveling wave reactor fuel elements [poster session]. In: Materials Modeling and Simulation for Nuclear Fuels 2013 Workshop; 2013 Oct 14-16; Chicago, 1L, USA; 2013.
  • 7Cohen M, Werner M, Johns C. Mechanical model of a TerraPower, traveling wave reactor fuel assembly duct. In: 22nd International Conference on Struc- tural Mechanics in Reactor Technology; 2013 Aug 18-23; San Francisco, CA, USA. Red Hook: Curran Associates, Inc.; 2014.
  • 8Rates E, Truong B, Huddar L. Phase I1 of the EBR-II SHRT-45R benchmark study--TerraPower's SAS4A/SASSYS-I results. In: Proceedings of 2016 Ad- vances in Reactor Physics--Linking Research, Industry, and Education (PHYSOR 2016); 2016 May 1-5; Sun Valley. ID, USA; Forthcoming 2016.
  • 9Pahl R, Lahm CE, Hayes SL. Performance of HT9 clad metallic fuel at high tem- perature. J Nucl Mater 1993;204:141-7.
  • 10Yacout AM, Salvatores S, Orechwa Y. Degradation analysis estimates of the time-to-failure distribution of irradiated fuel elements. Nucl Tech 1996;113(2):177-89.

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部