摘要
The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.
行波堆为一次通过式燃料循环反应堆,其利用堆芯自增殖大大降低了对浓缩和后处理的需求。自增殖将次临界换料燃料转化为新的临界燃料,从而使增殖燃烧波得以扩散。该理念建立在增殖燃烧波和燃料的相对移动的基础上。因此,燃料或增殖燃烧波相对于固定的观察器而言是移动的。行波堆最实用的体现就是能够在将核反应保持在同一位置的同时移动燃料——有时行波堆也被称为"驻波堆"。行波堆能够使用换料铀燃料运行,换料铀燃料包括完全贫化铀、天然铀和低浓缩铀燃料(即235U含量为5.5%或更低的燃料),这些燃料通常在快谱中达不到临界状态。轻水反应堆卸出的乏燃料也可以作为行波堆的换料燃料。上述情况均无需后处理即可实现极高的燃料利用率和燃料废物量的显著降低。当换料燃料为贫化铀时,行波堆的最大优势得以实现,即在启动后,无需浓缩设施,就可维持最先启动的反应堆和一连串后续的反应堆的运行。自2006年起,泰拉能源公司(Terra Power)与50多个机构高度协作,开展了概念设计、工程设计和相关技术开发活动,力争到2026年实现将第一个机组投入使用。本文总结了行波堆技术,包括它的发展计划及其进展,分析了行波堆的社会和经济效益。